ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releldm GIF version

Theorem releldm 4683
Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 2-Jul-2008.)
Assertion
Ref Expression
releldm ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)

Proof of Theorem releldm
StepHypRef Expression
1 brrelex 4491 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
2 brrelex2 4492 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
3 simpr 109 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴𝑅𝐵)
4 breldmg 4655 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
51, 2, 3, 4syl3anc 1175 1 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1439  Vcvv 2620   class class class wbr 3851  dom cdm 4452  Rel wrel 4457
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-br 3852  df-opab 3906  df-xp 4458  df-rel 4459  df-dm 4462
This theorem is referenced by:  releldmb  4685  releldmi  4687  funeu  5053  fnbr  5129  relelfvdm  5349  funbrfv2b  5362  funfvbrb  5426  ercl  6317
  Copyright terms: Public domain W3C validator