ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releldm GIF version

Theorem releldm 4912
Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 2-Jul-2008.)
Assertion
Ref Expression
releldm ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)

Proof of Theorem releldm
StepHypRef Expression
1 brrelex 4714 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
2 brrelex2 4715 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
3 simpr 110 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴𝑅𝐵)
4 breldmg 4883 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
51, 2, 3, 4syl3anc 1249 1 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2175  Vcvv 2771   class class class wbr 4043  dom cdm 4674  Rel wrel 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-rel 4681  df-dm 4684
This theorem is referenced by:  releldmb  4914  releldmi  4916  funeu  5295  fnbr  5377  relelfvdm  5607  funbrfv2b  5622  funfvbrb  5692  ercl  6630  dvidlemap  15105  dvidrelem  15106  dvidsslem  15107  dvmulxxbr  15116  dviaddf  15119  dvimulf  15120  dvcoapbr  15121
  Copyright terms: Public domain W3C validator