| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > structex | GIF version | ||
| Description: A structure is a set. (Contributed by AV, 10-Nov-2021.) |
| Ref | Expression |
|---|---|
| structex | ⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brstruct 12712 | . 2 ⊢ Rel Struct | |
| 2 | 1 | brrelex1i 4707 | 1 ⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 Vcvv 2763 class class class wbr 4034 Struct cstr 12699 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-struct 12705 |
| This theorem is referenced by: strsetsid 12736 setsn0fun 12740 strslfv 12748 strslfv3 12749 strressid 12774 strleund 12806 strleun 12807 strext 12808 opelstrsl 12817 cnfldex 14191 |
| Copyright terms: Public domain | W3C validator |