ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structex GIF version

Theorem structex 13052
Description: A structure is a set. (Contributed by AV, 10-Nov-2021.)
Assertion
Ref Expression
structex (𝐺 Struct 𝑋𝐺 ∈ V)

Proof of Theorem structex
StepHypRef Expression
1 brstruct 13049 . 2 Rel Struct
21brrelex1i 4762 1 (𝐺 Struct 𝑋𝐺 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  Vcvv 2799   class class class wbr 4083   Struct cstr 13036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-struct 13042
This theorem is referenced by:  strsetsid  13073  setsn0fun  13077  strslfv  13085  strslfv3  13086  bassetsnn  13097  strressid  13112  strleund  13144  strleun  13145  strext  13146  opelstrsl  13155  cnfldex  14531  basvtxval2dom  15843  edgfiedgval2dom  15844  structgr2slots2dom  15850  setsvtx  15860  setsiedg  15861  usgrstrrepeen  16037
  Copyright terms: Public domain W3C validator