| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > structex | GIF version | ||
| Description: A structure is a set. (Contributed by AV, 10-Nov-2021.) |
| Ref | Expression |
|---|---|
| structex | ⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brstruct 13007 | . 2 ⊢ Rel Struct | |
| 2 | 1 | brrelex1i 4739 | 1 ⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 Vcvv 2779 class class class wbr 4062 Struct cstr 12994 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-xp 4702 df-rel 4703 df-struct 13000 |
| This theorem is referenced by: strsetsid 13031 setsn0fun 13035 strslfv 13043 strslfv3 13044 bassetsnn 13055 strressid 13070 strleund 13102 strleun 13103 strext 13104 opelstrsl 13113 cnfldex 14488 basvtxval2dom 15800 edgfiedgval2dom 15801 structgr2slots2dom 15807 setsvtx 15817 setsiedg 15818 usgrstrrepeen 15994 |
| Copyright terms: Public domain | W3C validator |