| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > structex | GIF version | ||
| Description: A structure is a set. (Contributed by AV, 10-Nov-2021.) |
| Ref | Expression |
|---|---|
| structex | ⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brstruct 12885 | . 2 ⊢ Rel Struct | |
| 2 | 1 | brrelex1i 4722 | 1 ⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 Vcvv 2773 class class class wbr 4047 Struct cstr 12872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-xp 4685 df-rel 4686 df-struct 12878 |
| This theorem is referenced by: strsetsid 12909 setsn0fun 12913 strslfv 12921 strslfv3 12922 strressid 12947 strleund 12979 strleun 12980 strext 12981 opelstrsl 12990 cnfldex 14365 basvtxval2dom 15677 edgfiedgval2dom 15678 structgr2slots2dom 15684 |
| Copyright terms: Public domain | W3C validator |