ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveq123d GIF version

Theorem oveq123d 5946
Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.)
Hypotheses
Ref Expression
oveq123d.1 (𝜑𝐹 = 𝐺)
oveq123d.2 (𝜑𝐴 = 𝐵)
oveq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
oveq123d (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷))

Proof of Theorem oveq123d
StepHypRef Expression
1 oveq123d.1 . . 3 (𝜑𝐹 = 𝐺)
21oveqd 5942 . 2 (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶))
3 oveq123d.2 . . 3 (𝜑𝐴 = 𝐵)
4 oveq123d.3 . . 3 (𝜑𝐶 = 𝐷)
53, 4oveq12d 5943 . 2 (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷))
62, 5eqtrd 2229 1 (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  (class class class)co 5925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  csbov123g  5964  prdsplusgfval  12988  prdsmulrfval  12990  issgrp  13107  sgrp1  13115  issgrpd  13116  ismndd  13141  grpsubfvalg  13249  grpsubpropdg  13308  imasgrp  13319  subgsub  13394  releqgg  13428  eqgex  13429  eqgfval  13430  isrng  13568  isrngd  13587  issrg  13599  srgidmlem  13612  isring  13634  ringass  13650  ringidmlem  13656  isringd  13675  ring1  13693  unitlinv  13760  unitrinv  13761  dvrfvald  13767  islmodd  13927  islidlm  14113  rnglidlmsgrp  14131  rnglidlrng  14132  psrval  14300
  Copyright terms: Public domain W3C validator