ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveq123d GIF version

Theorem oveq123d 5964
Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.)
Hypotheses
Ref Expression
oveq123d.1 (𝜑𝐹 = 𝐺)
oveq123d.2 (𝜑𝐴 = 𝐵)
oveq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
oveq123d (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷))

Proof of Theorem oveq123d
StepHypRef Expression
1 oveq123d.1 . . 3 (𝜑𝐹 = 𝐺)
21oveqd 5960 . 2 (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶))
3 oveq123d.2 . . 3 (𝜑𝐴 = 𝐵)
4 oveq123d.3 . . 3 (𝜑𝐶 = 𝐷)
53, 4oveq12d 5961 . 2 (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷))
62, 5eqtrd 2237 1 (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  (class class class)co 5943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5231  df-fv 5278  df-ov 5946
This theorem is referenced by:  csbov123g  5982  prdsplusgfval  13087  prdsmulrfval  13089  issgrp  13206  sgrp1  13214  issgrpd  13215  ismndd  13240  grpsubfvalg  13348  grpsubpropdg  13407  imasgrp  13418  subgsub  13493  releqgg  13527  eqgex  13528  eqgfval  13529  isrng  13667  isrngd  13686  issrg  13698  srgidmlem  13711  isring  13733  ringass  13749  ringidmlem  13755  isringd  13774  ring1  13792  unitlinv  13859  unitrinv  13860  dvrfvald  13866  islmodd  14026  islidlm  14212  rnglidlmsgrp  14230  rnglidlrng  14231  psrval  14399
  Copyright terms: Public domain W3C validator