ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveq123d GIF version

Theorem oveq123d 5983
Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.)
Hypotheses
Ref Expression
oveq123d.1 (𝜑𝐹 = 𝐺)
oveq123d.2 (𝜑𝐴 = 𝐵)
oveq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
oveq123d (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷))

Proof of Theorem oveq123d
StepHypRef Expression
1 oveq123d.1 . . 3 (𝜑𝐹 = 𝐺)
21oveqd 5979 . 2 (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶))
3 oveq123d.2 . . 3 (𝜑𝐴 = 𝐵)
4 oveq123d.3 . . 3 (𝜑𝐶 = 𝐷)
53, 4oveq12d 5980 . 2 (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷))
62, 5eqtrd 2239 1 (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  (class class class)co 5962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3174  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-iota 5246  df-fv 5293  df-ov 5965
This theorem is referenced by:  csbov123g  6001  prdsplusgfval  13201  prdsmulrfval  13203  issgrp  13320  sgrp1  13328  issgrpd  13329  ismndd  13354  grpsubfvalg  13462  grpsubpropdg  13521  imasgrp  13532  subgsub  13607  releqgg  13641  eqgex  13642  eqgfval  13643  isrng  13781  isrngd  13800  issrg  13812  srgidmlem  13825  isring  13847  ringass  13863  ringidmlem  13869  isringd  13888  ring1  13906  unitlinv  13973  unitrinv  13974  dvrfvald  13980  islmodd  14140  islidlm  14326  rnglidlmsgrp  14344  rnglidlrng  14345  psrval  14513
  Copyright terms: Public domain W3C validator