ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveq123d GIF version

Theorem oveq123d 5863
Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.)
Hypotheses
Ref Expression
oveq123d.1 (𝜑𝐹 = 𝐺)
oveq123d.2 (𝜑𝐴 = 𝐵)
oveq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
oveq123d (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷))

Proof of Theorem oveq123d
StepHypRef Expression
1 oveq123d.1 . . 3 (𝜑𝐹 = 𝐺)
21oveqd 5859 . 2 (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶))
3 oveq123d.2 . . 3 (𝜑𝐴 = 𝐵)
4 oveq123d.3 . . 3 (𝜑𝐶 = 𝐷)
53, 4oveq12d 5860 . 2 (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷))
62, 5eqtrd 2198 1 (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  csbov123g  5880
  Copyright terms: Public domain W3C validator