ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctex GIF version

Theorem ctex 6598
Description: A class dominated by ω is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
ctex (𝐴 ≼ ω → 𝐴 ∈ V)

Proof of Theorem ctex
StepHypRef Expression
1 reldom 6590 . 2 Rel ≼
21brrelex1i 4540 1 (𝐴 ≼ ω → 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1461  Vcvv 2655   class class class wbr 3893  ωcom 4462  cdom 6584
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-xp 4503  df-rel 4504  df-dom 6587
This theorem is referenced by:  cnvct  6654  ssct  6662  xpct  11747
  Copyright terms: Public domain W3C validator