| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ctex | GIF version | ||
| Description: A class dominated by ω is a set. See also ctfoex 7184 which says that a countable class is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.) | 
| Ref | Expression | 
|---|---|
| ctex | ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reldom 6804 | . 2 ⊢ Rel ≼ | |
| 2 | 1 | brrelex1i 4706 | 1 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 Vcvv 2763 class class class wbr 4033 ωcom 4626 ≼ cdom 6798 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-dom 6801 | 
| This theorem is referenced by: cnvct 6868 ssct 6877 xpct 12613 | 
| Copyright terms: Public domain | W3C validator |