Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ctfoex | GIF version |
Description: A countable class is a set. (Contributed by Jim Kingdon, 25-Dec-2023.) |
Ref | Expression |
---|---|
ctfoex | ⊢ (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4577 | . . . . 5 ⊢ ω ∈ V | |
2 | fornex 6094 | . . . . 5 ⊢ (ω ∈ V → (𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝐴 ⊔ 1o) ∈ V)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝐴 ⊔ 1o) ∈ V) |
4 | djuexb 7021 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 1o ∈ V) ↔ (𝐴 ⊔ 1o) ∈ V) | |
5 | 3, 4 | sylibr 133 | . . 3 ⊢ (𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝐴 ∈ V ∧ 1o ∈ V)) |
6 | 5 | simpld 111 | . 2 ⊢ (𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝐴 ∈ V) |
7 | 6 | exlimiv 1591 | 1 ⊢ (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1485 ∈ wcel 2141 Vcvv 2730 ωcom 4574 –onto→wfo 5196 1oc1o 6388 ⊔ cdju 7014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1o 6395 df-dju 7015 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |