![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ctfoex | GIF version |
Description: A countable class is a set. (Contributed by Jim Kingdon, 25-Dec-2023.) |
Ref | Expression |
---|---|
ctfoex | ⊢ (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4617 | . . . . 5 ⊢ ω ∈ V | |
2 | focdmex 6155 | . . . . 5 ⊢ (ω ∈ V → (𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝐴 ⊔ 1o) ∈ V)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝐴 ⊔ 1o) ∈ V) |
4 | djuexb 7089 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 1o ∈ V) ↔ (𝐴 ⊔ 1o) ∈ V) | |
5 | 3, 4 | sylibr 134 | . . 3 ⊢ (𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝐴 ∈ V ∧ 1o ∈ V)) |
6 | 5 | simpld 112 | . 2 ⊢ (𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝐴 ∈ V) |
7 | 6 | exlimiv 1609 | 1 ⊢ (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1503 ∈ wcel 2160 Vcvv 2756 ωcom 4614 –onto→wfo 5240 1oc1o 6449 ⊔ cdju 7082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4140 ax-sep 4143 ax-nul 4151 ax-pow 4199 ax-pr 4234 ax-un 4458 ax-iinf 4612 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2758 df-sbc 2982 df-csb 3077 df-dif 3151 df-un 3153 df-in 3155 df-ss 3162 df-nul 3443 df-pw 3599 df-sn 3620 df-pr 3621 df-op 3623 df-uni 3832 df-int 3867 df-iun 3910 df-br 4026 df-opab 4087 df-mpt 4088 df-tr 4124 df-id 4318 df-iord 4391 df-on 4393 df-suc 4396 df-iom 4615 df-xp 4657 df-rel 4658 df-cnv 4659 df-co 4660 df-dm 4661 df-rn 4662 df-res 4663 df-ima 4664 df-iota 5203 df-fun 5244 df-fn 5245 df-f 5246 df-f1 5247 df-fo 5248 df-f1o 5249 df-fv 5250 df-1o 6456 df-dju 7083 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |