| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ctfoex | GIF version | ||
| Description: A countable class is a set. (Contributed by Jim Kingdon, 25-Dec-2023.) | 
| Ref | Expression | 
|---|---|
| ctfoex | ⊢ (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝐴 ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | omex 4629 | . . . . 5 ⊢ ω ∈ V | |
| 2 | focdmex 6172 | . . . . 5 ⊢ (ω ∈ V → (𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝐴 ⊔ 1o) ∈ V)) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝐴 ⊔ 1o) ∈ V) | 
| 4 | djuexb 7110 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 1o ∈ V) ↔ (𝐴 ⊔ 1o) ∈ V) | |
| 5 | 3, 4 | sylibr 134 | . . 3 ⊢ (𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝐴 ∈ V ∧ 1o ∈ V)) | 
| 6 | 5 | simpld 112 | . 2 ⊢ (𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝐴 ∈ V) | 
| 7 | 6 | exlimiv 1612 | 1 ⊢ (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝐴 ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 ωcom 4626 –onto→wfo 5256 1oc1o 6467 ⊔ cdju 7103 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1o 6474 df-dju 7104 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |