ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctfoex GIF version

Theorem ctfoex 7179
Description: A countable class is a set. (Contributed by Jim Kingdon, 25-Dec-2023.)
Assertion
Ref Expression
ctfoex (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝐴 ∈ V)
Distinct variable group:   𝐴,𝑓

Proof of Theorem ctfoex
StepHypRef Expression
1 omex 4626 . . . . 5 ω ∈ V
2 focdmex 6169 . . . . 5 (ω ∈ V → (𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝐴 ⊔ 1o) ∈ V))
31, 2ax-mp 5 . . . 4 (𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝐴 ⊔ 1o) ∈ V)
4 djuexb 7105 . . . 4 ((𝐴 ∈ V ∧ 1o ∈ V) ↔ (𝐴 ⊔ 1o) ∈ V)
53, 4sylibr 134 . . 3 (𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝐴 ∈ V ∧ 1o ∈ V))
65simpld 112 . 2 (𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝐴 ∈ V)
76exlimiv 1609 1 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1503  wcel 2164  Vcvv 2760  ωcom 4623  ontowfo 5253  1oc1o 6464  cdju 7098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6471  df-dju 7099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator