ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enct GIF version

Theorem enct 12452
Description: Countability is invariant relative to equinumerosity. (Contributed by Jim Kingdon, 23-Dec-2023.)
Assertion
Ref Expression
enct (𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔

Proof of Theorem enct
StepHypRef Expression
1 enctlem 12451 . 2 (𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
2 ensym 6799 . . 3 (𝐴𝐵𝐵𝐴)
3 enctlem 12451 . . 3 (𝐵𝐴 → (∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)))
42, 3syl 14 . 2 (𝐴𝐵 → (∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)))
51, 4impbid 129 1 (𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wex 1503   class class class wbr 4018  ωcom 4604  ontowfo 5229  1oc1o 6428  cen 6756  cdju 7054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-iord 4381  df-on 4383  df-suc 4386  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-1st 6159  df-2nd 6160  df-1o 6435  df-er 6553  df-en 6759  df-dju 7055  df-inl 7064  df-inr 7065
This theorem is referenced by:  ssnnctlemct  12465
  Copyright terms: Public domain W3C validator