ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enct GIF version

Theorem enct 12434
Description: Countability is invariant relative to equinumerosity. (Contributed by Jim Kingdon, 23-Dec-2023.)
Assertion
Ref Expression
enct (𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔

Proof of Theorem enct
StepHypRef Expression
1 enctlem 12433 . 2 (𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
2 ensym 6781 . . 3 (𝐴𝐵𝐵𝐴)
3 enctlem 12433 . . 3 (𝐵𝐴 → (∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)))
42, 3syl 14 . 2 (𝐴𝐵 → (∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)))
51, 4impbid 129 1 (𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wex 1492   class class class wbr 4004  ωcom 4590  ontowfo 5215  1oc1o 6410  cen 6738  cdju 7036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-1st 6141  df-2nd 6142  df-1o 6417  df-er 6535  df-en 6741  df-dju 7037  df-inl 7046  df-inr 7047
This theorem is referenced by:  ssnnctlemct  12447
  Copyright terms: Public domain W3C validator