ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enct GIF version

Theorem enct 12362
Description: Countability is invariant relative to equinumerosity. (Contributed by Jim Kingdon, 23-Dec-2023.)
Assertion
Ref Expression
enct (𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔

Proof of Theorem enct
StepHypRef Expression
1 enctlem 12361 . 2 (𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
2 ensym 6743 . . 3 (𝐴𝐵𝐵𝐴)
3 enctlem 12361 . . 3 (𝐵𝐴 → (∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)))
42, 3syl 14 . 2 (𝐴𝐵 → (∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)))
51, 4impbid 128 1 (𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wex 1480   class class class wbr 3981  ωcom 4566  ontowfo 5185  1oc1o 6373  cen 6700  cdju 6998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-iord 4343  df-on 4345  df-suc 4348  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-1st 6105  df-2nd 6106  df-1o 6380  df-er 6497  df-en 6703  df-dju 6999  df-inl 7008  df-inr 7009
This theorem is referenced by:  ssnnctlemct  12375
  Copyright terms: Public domain W3C validator