ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemen GIF version

Theorem ennnfonelemen 12907
Description: Lemma for ennnfone 12911. The result. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfone.l 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
Assertion
Ref Expression
ennnfonelemen (𝜑𝐴 ≈ ℕ)
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑖,𝐹,𝑗,𝑘,𝑛   𝑥,𝐹,𝑦,𝑖,𝑘   𝑗,𝐺   𝑖,𝐻,𝑗,𝑘,𝑛   𝑥,𝐻,𝑦   𝑗,𝐽   𝑖,𝐿,𝑗,𝑥,𝑦   𝑖,𝑁,𝑗,𝑘,𝑛   𝑥,𝑁,𝑦   𝜑,𝑖,𝑗,𝑘,𝑛   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑖,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐿(𝑘,𝑛)

Proof of Theorem ennnfonelemen
StepHypRef Expression
1 ennnfonelemh.dceq . . . . . . 7 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . . . . 7 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . . . . 7 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . . . . 7 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . . . . 7 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . . . . 7 𝐻 = seq0(𝐺, 𝐽)
8 ennnfone.l . . . . . . 7 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemf1 12904 . . . . . 6 (𝜑𝐿:dom 𝐿1-1𝐴)
101, 2, 3, 4, 5, 6, 7, 8ennnfonelemdm 12906 . . . . . . 7 (𝜑 → dom 𝐿 = ω)
11 f1eq2 5499 . . . . . . 7 (dom 𝐿 = ω → (𝐿:dom 𝐿1-1𝐴𝐿:ω–1-1𝐴))
1210, 11syl 14 . . . . . 6 (𝜑 → (𝐿:dom 𝐿1-1𝐴𝐿:ω–1-1𝐴))
139, 12mpbid 147 . . . . 5 (𝜑𝐿:ω–1-1𝐴)
141, 2, 3, 4, 5, 6, 7, 8ennnfonelemrn 12905 . . . . 5 (𝜑 → ran 𝐿 = 𝐴)
15 dff1o5 5553 . . . . 5 (𝐿:ω–1-1-onto𝐴 ↔ (𝐿:ω–1-1𝐴 ∧ ran 𝐿 = 𝐴))
1613, 14, 15sylanbrc 417 . . . 4 (𝜑𝐿:ω–1-1-onto𝐴)
17 omex 4659 . . . . 5 ω ∈ V
1817f1oen 6873 . . . 4 (𝐿:ω–1-1-onto𝐴 → ω ≈ 𝐴)
1916, 18syl 14 . . 3 (𝜑 → ω ≈ 𝐴)
2019ensymd 6898 . 2 (𝜑𝐴 ≈ ω)
21 nnenom 10616 . . 3 ℕ ≈ ω
2221ensymi 6897 . 2 ω ≈ ℕ
23 entr 6899 . 2 ((𝐴 ≈ ω ∧ ω ≈ ℕ) → 𝐴 ≈ ℕ)
2420, 22, 23sylancl 413 1 (𝜑𝐴 ≈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  DECID wdc 836   = wceq 1373  wcel 2178  wne 2378  wral 2486  wrex 2487  cun 3172  c0 3468  ifcif 3579  {csn 3643  cop 3646   ciun 3941   class class class wbr 4059  cmpt 4121  suc csuc 4430  ωcom 4656  ccnv 4692  dom cdm 4693  ran crn 4694  cima 4696  1-1wf1 5287  ontowfo 5288  1-1-ontowf1o 5289  cfv 5290  (class class class)co 5967  cmpo 5969  freccfrec 6499  pm cpm 6759  cen 6848  0cc0 7960  1c1 7961   + caddc 7963  cmin 8278  cn 9071  0cn0 9330  cz 9407  seqcseq 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-er 6643  df-pm 6761  df-en 6851  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630
This theorem is referenced by:  ennnfonelemnn0  12908
  Copyright terms: Public domain W3C validator