![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ennnfonelemen | GIF version |
Description: Lemma for ennnfone 12582. The result. (Contributed by Jim Kingdon, 16-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
ennnfone.l | ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) |
Ref | Expression |
---|---|
ennnfonelemen | ⊢ (𝜑 → 𝐴 ≈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemh.dceq | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | ennnfonelemh.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
3 | ennnfonelemh.ne | . . . . . . 7 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
4 | ennnfonelemh.g | . . . . . . 7 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | |
5 | ennnfonelemh.n | . . . . . . 7 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
6 | ennnfonelemh.j | . . . . . . 7 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
7 | ennnfonelemh.h | . . . . . . 7 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
8 | ennnfone.l | . . . . . . 7 ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ennnfonelemf1 12575 | . . . . . 6 ⊢ (𝜑 → 𝐿:dom 𝐿–1-1→𝐴) |
10 | 1, 2, 3, 4, 5, 6, 7, 8 | ennnfonelemdm 12577 | . . . . . . 7 ⊢ (𝜑 → dom 𝐿 = ω) |
11 | f1eq2 5455 | . . . . . . 7 ⊢ (dom 𝐿 = ω → (𝐿:dom 𝐿–1-1→𝐴 ↔ 𝐿:ω–1-1→𝐴)) | |
12 | 10, 11 | syl 14 | . . . . . 6 ⊢ (𝜑 → (𝐿:dom 𝐿–1-1→𝐴 ↔ 𝐿:ω–1-1→𝐴)) |
13 | 9, 12 | mpbid 147 | . . . . 5 ⊢ (𝜑 → 𝐿:ω–1-1→𝐴) |
14 | 1, 2, 3, 4, 5, 6, 7, 8 | ennnfonelemrn 12576 | . . . . 5 ⊢ (𝜑 → ran 𝐿 = 𝐴) |
15 | dff1o5 5509 | . . . . 5 ⊢ (𝐿:ω–1-1-onto→𝐴 ↔ (𝐿:ω–1-1→𝐴 ∧ ran 𝐿 = 𝐴)) | |
16 | 13, 14, 15 | sylanbrc 417 | . . . 4 ⊢ (𝜑 → 𝐿:ω–1-1-onto→𝐴) |
17 | omex 4625 | . . . . 5 ⊢ ω ∈ V | |
18 | 17 | f1oen 6813 | . . . 4 ⊢ (𝐿:ω–1-1-onto→𝐴 → ω ≈ 𝐴) |
19 | 16, 18 | syl 14 | . . 3 ⊢ (𝜑 → ω ≈ 𝐴) |
20 | 19 | ensymd 6837 | . 2 ⊢ (𝜑 → 𝐴 ≈ ω) |
21 | nnenom 10505 | . . 3 ⊢ ℕ ≈ ω | |
22 | 21 | ensymi 6836 | . 2 ⊢ ω ≈ ℕ |
23 | entr 6838 | . 2 ⊢ ((𝐴 ≈ ω ∧ ω ≈ ℕ) → 𝐴 ≈ ℕ) | |
24 | 20, 22, 23 | sylancl 413 | 1 ⊢ (𝜑 → 𝐴 ≈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∀wral 2472 ∃wrex 2473 ∪ cun 3151 ∅c0 3446 ifcif 3557 {csn 3618 〈cop 3621 ∪ ciun 3912 class class class wbr 4029 ↦ cmpt 4090 suc csuc 4396 ωcom 4622 ◡ccnv 4658 dom cdm 4659 ran crn 4660 “ cima 4662 –1-1→wf1 5251 –onto→wfo 5252 –1-1-onto→wf1o 5253 ‘cfv 5254 (class class class)co 5918 ∈ cmpo 5920 freccfrec 6443 ↑pm cpm 6703 ≈ cen 6792 0cc0 7872 1c1 7873 + caddc 7875 − cmin 8190 ℕcn 8982 ℕ0cn0 9240 ℤcz 9317 seqcseq 10518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-er 6587 df-pm 6705 df-en 6795 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-seqfrec 10519 |
This theorem is referenced by: ennnfonelemnn0 12579 |
Copyright terms: Public domain | W3C validator |