| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemen | GIF version | ||
| Description: Lemma for ennnfone 12642. The result. (Contributed by Jim Kingdon, 16-Jul-2023.) | 
| Ref | Expression | 
|---|---|
| ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | 
| ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | 
| ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | 
| ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | 
| ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | 
| ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | 
| ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) | 
| ennnfone.l | ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) | 
| Ref | Expression | 
|---|---|
| ennnfonelemen | ⊢ (𝜑 → 𝐴 ≈ ℕ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ennnfonelemh.dceq | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
| 2 | ennnfonelemh.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
| 3 | ennnfonelemh.ne | . . . . . . 7 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
| 4 | ennnfonelemh.g | . . . . . . 7 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | |
| 5 | ennnfonelemh.n | . . . . . . 7 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 6 | ennnfonelemh.j | . . . . . . 7 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
| 7 | ennnfonelemh.h | . . . . . . 7 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
| 8 | ennnfone.l | . . . . . . 7 ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | ennnfonelemf1 12635 | . . . . . 6 ⊢ (𝜑 → 𝐿:dom 𝐿–1-1→𝐴) | 
| 10 | 1, 2, 3, 4, 5, 6, 7, 8 | ennnfonelemdm 12637 | . . . . . . 7 ⊢ (𝜑 → dom 𝐿 = ω) | 
| 11 | f1eq2 5459 | . . . . . . 7 ⊢ (dom 𝐿 = ω → (𝐿:dom 𝐿–1-1→𝐴 ↔ 𝐿:ω–1-1→𝐴)) | |
| 12 | 10, 11 | syl 14 | . . . . . 6 ⊢ (𝜑 → (𝐿:dom 𝐿–1-1→𝐴 ↔ 𝐿:ω–1-1→𝐴)) | 
| 13 | 9, 12 | mpbid 147 | . . . . 5 ⊢ (𝜑 → 𝐿:ω–1-1→𝐴) | 
| 14 | 1, 2, 3, 4, 5, 6, 7, 8 | ennnfonelemrn 12636 | . . . . 5 ⊢ (𝜑 → ran 𝐿 = 𝐴) | 
| 15 | dff1o5 5513 | . . . . 5 ⊢ (𝐿:ω–1-1-onto→𝐴 ↔ (𝐿:ω–1-1→𝐴 ∧ ran 𝐿 = 𝐴)) | |
| 16 | 13, 14, 15 | sylanbrc 417 | . . . 4 ⊢ (𝜑 → 𝐿:ω–1-1-onto→𝐴) | 
| 17 | omex 4629 | . . . . 5 ⊢ ω ∈ V | |
| 18 | 17 | f1oen 6818 | . . . 4 ⊢ (𝐿:ω–1-1-onto→𝐴 → ω ≈ 𝐴) | 
| 19 | 16, 18 | syl 14 | . . 3 ⊢ (𝜑 → ω ≈ 𝐴) | 
| 20 | 19 | ensymd 6842 | . 2 ⊢ (𝜑 → 𝐴 ≈ ω) | 
| 21 | nnenom 10526 | . . 3 ⊢ ℕ ≈ ω | |
| 22 | 21 | ensymi 6841 | . 2 ⊢ ω ≈ ℕ | 
| 23 | entr 6843 | . 2 ⊢ ((𝐴 ≈ ω ∧ ω ≈ ℕ) → 𝐴 ≈ ℕ) | |
| 24 | 20, 22, 23 | sylancl 413 | 1 ⊢ (𝜑 → 𝐴 ≈ ℕ) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∀wral 2475 ∃wrex 2476 ∪ cun 3155 ∅c0 3450 ifcif 3561 {csn 3622 〈cop 3625 ∪ ciun 3916 class class class wbr 4033 ↦ cmpt 4094 suc csuc 4400 ωcom 4626 ◡ccnv 4662 dom cdm 4663 ran crn 4664 “ cima 4666 –1-1→wf1 5255 –onto→wfo 5256 –1-1-onto→wf1o 5257 ‘cfv 5258 (class class class)co 5922 ∈ cmpo 5924 freccfrec 6448 ↑pm cpm 6708 ≈ cen 6797 0cc0 7879 1c1 7880 + caddc 7882 − cmin 8197 ℕcn 8990 ℕ0cn0 9249 ℤcz 9326 seqcseq 10539 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-er 6592 df-pm 6710 df-en 6800 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-seqfrec 10540 | 
| This theorem is referenced by: ennnfonelemnn0 12639 | 
| Copyright terms: Public domain | W3C validator |