ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemen GIF version

Theorem ennnfonelemen 12581
Description: Lemma for ennnfone 12585. The result. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfone.l 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
Assertion
Ref Expression
ennnfonelemen (𝜑𝐴 ≈ ℕ)
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑖,𝐹,𝑗,𝑘,𝑛   𝑥,𝐹,𝑦,𝑖,𝑘   𝑗,𝐺   𝑖,𝐻,𝑗,𝑘,𝑛   𝑥,𝐻,𝑦   𝑗,𝐽   𝑖,𝐿,𝑗,𝑥,𝑦   𝑖,𝑁,𝑗,𝑘,𝑛   𝑥,𝑁,𝑦   𝜑,𝑖,𝑗,𝑘,𝑛   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑖,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐿(𝑘,𝑛)

Proof of Theorem ennnfonelemen
StepHypRef Expression
1 ennnfonelemh.dceq . . . . . . 7 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . . . . 7 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . . . . 7 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . . . . 7 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . . . . 7 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . . . . 7 𝐻 = seq0(𝐺, 𝐽)
8 ennnfone.l . . . . . . 7 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemf1 12578 . . . . . 6 (𝜑𝐿:dom 𝐿1-1𝐴)
101, 2, 3, 4, 5, 6, 7, 8ennnfonelemdm 12580 . . . . . . 7 (𝜑 → dom 𝐿 = ω)
11 f1eq2 5456 . . . . . . 7 (dom 𝐿 = ω → (𝐿:dom 𝐿1-1𝐴𝐿:ω–1-1𝐴))
1210, 11syl 14 . . . . . 6 (𝜑 → (𝐿:dom 𝐿1-1𝐴𝐿:ω–1-1𝐴))
139, 12mpbid 147 . . . . 5 (𝜑𝐿:ω–1-1𝐴)
141, 2, 3, 4, 5, 6, 7, 8ennnfonelemrn 12579 . . . . 5 (𝜑 → ran 𝐿 = 𝐴)
15 dff1o5 5510 . . . . 5 (𝐿:ω–1-1-onto𝐴 ↔ (𝐿:ω–1-1𝐴 ∧ ran 𝐿 = 𝐴))
1613, 14, 15sylanbrc 417 . . . 4 (𝜑𝐿:ω–1-1-onto𝐴)
17 omex 4626 . . . . 5 ω ∈ V
1817f1oen 6815 . . . 4 (𝐿:ω–1-1-onto𝐴 → ω ≈ 𝐴)
1916, 18syl 14 . . 3 (𝜑 → ω ≈ 𝐴)
2019ensymd 6839 . 2 (𝜑𝐴 ≈ ω)
21 nnenom 10508 . . 3 ℕ ≈ ω
2221ensymi 6838 . 2 ω ≈ ℕ
23 entr 6840 . 2 ((𝐴 ≈ ω ∧ ω ≈ ℕ) → 𝐴 ≈ ℕ)
2420, 22, 23sylancl 413 1 (𝜑𝐴 ≈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  DECID wdc 835   = wceq 1364  wcel 2164  wne 2364  wral 2472  wrex 2473  cun 3152  c0 3447  ifcif 3558  {csn 3619  cop 3622   ciun 3913   class class class wbr 4030  cmpt 4091  suc csuc 4397  ωcom 4623  ccnv 4659  dom cdm 4660  ran crn 4661  cima 4663  1-1wf1 5252  ontowfo 5253  1-1-ontowf1o 5254  cfv 5255  (class class class)co 5919  cmpo 5921  freccfrec 6445  pm cpm 6705  cen 6794  0cc0 7874  1c1 7875   + caddc 7877  cmin 8192  cn 8984  0cn0 9243  cz 9320  seqcseq 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-er 6589  df-pm 6707  df-en 6797  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522
This theorem is referenced by:  ennnfonelemnn0  12582
  Copyright terms: Public domain W3C validator