ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemen GIF version

Theorem ennnfonelemen 12825
Description: Lemma for ennnfone 12829. The result. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfone.l 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
Assertion
Ref Expression
ennnfonelemen (𝜑𝐴 ≈ ℕ)
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑖,𝐹,𝑗,𝑘,𝑛   𝑥,𝐹,𝑦,𝑖,𝑘   𝑗,𝐺   𝑖,𝐻,𝑗,𝑘,𝑛   𝑥,𝐻,𝑦   𝑗,𝐽   𝑖,𝐿,𝑗,𝑥,𝑦   𝑖,𝑁,𝑗,𝑘,𝑛   𝑥,𝑁,𝑦   𝜑,𝑖,𝑗,𝑘,𝑛   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑖,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐿(𝑘,𝑛)

Proof of Theorem ennnfonelemen
StepHypRef Expression
1 ennnfonelemh.dceq . . . . . . 7 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . . . . 7 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . . . . 7 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . . . . 7 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . . . . 7 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . . . . 7 𝐻 = seq0(𝐺, 𝐽)
8 ennnfone.l . . . . . . 7 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemf1 12822 . . . . . 6 (𝜑𝐿:dom 𝐿1-1𝐴)
101, 2, 3, 4, 5, 6, 7, 8ennnfonelemdm 12824 . . . . . . 7 (𝜑 → dom 𝐿 = ω)
11 f1eq2 5479 . . . . . . 7 (dom 𝐿 = ω → (𝐿:dom 𝐿1-1𝐴𝐿:ω–1-1𝐴))
1210, 11syl 14 . . . . . 6 (𝜑 → (𝐿:dom 𝐿1-1𝐴𝐿:ω–1-1𝐴))
139, 12mpbid 147 . . . . 5 (𝜑𝐿:ω–1-1𝐴)
141, 2, 3, 4, 5, 6, 7, 8ennnfonelemrn 12823 . . . . 5 (𝜑 → ran 𝐿 = 𝐴)
15 dff1o5 5533 . . . . 5 (𝐿:ω–1-1-onto𝐴 ↔ (𝐿:ω–1-1𝐴 ∧ ran 𝐿 = 𝐴))
1613, 14, 15sylanbrc 417 . . . 4 (𝜑𝐿:ω–1-1-onto𝐴)
17 omex 4642 . . . . 5 ω ∈ V
1817f1oen 6852 . . . 4 (𝐿:ω–1-1-onto𝐴 → ω ≈ 𝐴)
1916, 18syl 14 . . 3 (𝜑 → ω ≈ 𝐴)
2019ensymd 6877 . 2 (𝜑𝐴 ≈ ω)
21 nnenom 10581 . . 3 ℕ ≈ ω
2221ensymi 6876 . 2 ω ≈ ℕ
23 entr 6878 . 2 ((𝐴 ≈ ω ∧ ω ≈ ℕ) → 𝐴 ≈ ℕ)
2420, 22, 23sylancl 413 1 (𝜑𝐴 ≈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  DECID wdc 836   = wceq 1373  wcel 2176  wne 2376  wral 2484  wrex 2485  cun 3164  c0 3460  ifcif 3571  {csn 3633  cop 3636   ciun 3927   class class class wbr 4045  cmpt 4106  suc csuc 4413  ωcom 4639  ccnv 4675  dom cdm 4676  ran crn 4677  cima 4679  1-1wf1 5269  ontowfo 5270  1-1-ontowf1o 5271  cfv 5272  (class class class)co 5946  cmpo 5948  freccfrec 6478  pm cpm 6738  cen 6827  0cc0 7927  1c1 7928   + caddc 7930  cmin 8245  cn 9038  0cn0 9297  cz 9374  seqcseq 10594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-er 6622  df-pm 6740  df-en 6830  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-seqfrec 10595
This theorem is referenced by:  ennnfonelemnn0  12826
  Copyright terms: Public domain W3C validator