Proof of Theorem pwf1oexmid
Step | Hyp | Ref
| Expression |
1 | | pwle2.t |
. . . . . 6
⊢ 𝑇 = ∪ 𝑥 ∈ 𝑁 ({𝑥} × 1o) |
2 | 1 | pwle2 13878 |
. . . . 5
⊢ ((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) → 𝑁 ⊆
2o) |
3 | 2 | adantr 274 |
. . . 4
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝑁 ⊆
2o) |
4 | | pw1dom2 7183 |
. . . . . 6
⊢
2o ≼ 𝒫 1o |
5 | | iunxpconst 4664 |
. . . . . . . . . . . 12
⊢ ∪ 𝑥 ∈ 𝑁 ({𝑥} × 1o) = (𝑁 × 1o) |
6 | | df1o2 6397 |
. . . . . . . . . . . . 13
⊢
1o = {∅} |
7 | 6 | xpeq2i 4625 |
. . . . . . . . . . . 12
⊢ (𝑁 × 1o) = (𝑁 ×
{∅}) |
8 | 1, 5, 7 | 3eqtri 2190 |
. . . . . . . . . . 11
⊢ 𝑇 = (𝑁 × {∅}) |
9 | | peano1 4571 |
. . . . . . . . . . . 12
⊢ ∅
∈ ω |
10 | | xpsneng 6788 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ω ∧ ∅
∈ ω) → (𝑁
× {∅}) ≈ 𝑁) |
11 | 9, 10 | mpan2 422 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ω → (𝑁 × {∅}) ≈
𝑁) |
12 | 8, 11 | eqbrtrid 4017 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ω → 𝑇 ≈ 𝑁) |
13 | 12 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝑇 ≈ 𝑁) |
14 | 13 | ensymd 6749 |
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝑁 ≈ 𝑇) |
15 | | relen 6710 |
. . . . . . . . . 10
⊢ Rel
≈ |
16 | | brrelex1 4643 |
. . . . . . . . . 10
⊢ ((Rel
≈ ∧ 𝑇 ≈
𝑁) → 𝑇 ∈ V) |
17 | 15, 13, 16 | sylancr 411 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝑇 ∈
V) |
18 | | simplr 520 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝐺:𝑇–1-1→𝒫 1o) |
19 | | simpr 109 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ ran 𝐺 = 𝒫
1o) |
20 | | dff1o5 5441 |
. . . . . . . . . 10
⊢ (𝐺:𝑇–1-1-onto→𝒫 1o ↔ (𝐺:𝑇–1-1→𝒫 1o ∧ ran 𝐺 = 𝒫
1o)) |
21 | 18, 19, 20 | sylanbrc 414 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝐺:𝑇–1-1-onto→𝒫 1o) |
22 | | f1oeng 6723 |
. . . . . . . . 9
⊢ ((𝑇 ∈ V ∧ 𝐺:𝑇–1-1-onto→𝒫 1o) → 𝑇 ≈ 𝒫
1o) |
23 | 17, 21, 22 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝑇 ≈ 𝒫
1o) |
24 | | entr 6750 |
. . . . . . . 8
⊢ ((𝑁 ≈ 𝑇 ∧ 𝑇 ≈ 𝒫 1o) →
𝑁 ≈ 𝒫
1o) |
25 | 14, 23, 24 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝑁 ≈ 𝒫
1o) |
26 | 25 | ensymd 6749 |
. . . . . 6
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝒫 1o ≈ 𝑁) |
27 | | domentr 6757 |
. . . . . 6
⊢
((2o ≼ 𝒫 1o ∧ 𝒫
1o ≈ 𝑁)
→ 2o ≼ 𝑁) |
28 | 4, 26, 27 | sylancr 411 |
. . . . 5
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 2o ≼ 𝑁) |
29 | | 2onn 6489 |
. . . . . . 7
⊢
2o ∈ ω |
30 | | nndomo 6830 |
. . . . . . 7
⊢
((2o ∈ ω ∧ 𝑁 ∈ ω) → (2o
≼ 𝑁 ↔
2o ⊆ 𝑁)) |
31 | 29, 30 | mpan 421 |
. . . . . 6
⊢ (𝑁 ∈ ω →
(2o ≼ 𝑁
↔ 2o ⊆ 𝑁)) |
32 | 31 | ad2antrr 480 |
. . . . 5
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ (2o ≼ 𝑁 ↔ 2o ⊆ 𝑁)) |
33 | 28, 32 | mpbid 146 |
. . . 4
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 2o ⊆ 𝑁) |
34 | 3, 33 | eqssd 3159 |
. . 3
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝑁 =
2o) |
35 | 26, 34 | breqtrd 4008 |
. . . 4
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝒫 1o ≈ 2o) |
36 | | exmidpw 6874 |
. . . 4
⊢
(EXMID ↔ 𝒫 1o ≈
2o) |
37 | 35, 36 | sylibr 133 |
. . 3
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ EXMID) |
38 | 34, 37 | jca 304 |
. 2
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ (𝑁 = 2o
∧ EXMID)) |
39 | | simplr 520 |
. . . . 5
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 𝐺:𝑇–1-1→𝒫 1o) |
40 | 12 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 𝑇 ≈ 𝑁) |
41 | | simprl 521 |
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 𝑁 = 2o) |
42 | 40, 41 | breqtrd 4008 |
. . . . . . 7
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 𝑇 ≈ 2o) |
43 | | simprr 522 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → EXMID) |
44 | 43, 36 | sylib 121 |
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 𝒫 1o ≈
2o) |
45 | 44 | ensymd 6749 |
. . . . . . 7
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 2o ≈ 𝒫
1o) |
46 | | entr 6750 |
. . . . . . 7
⊢ ((𝑇 ≈ 2o ∧
2o ≈ 𝒫 1o) → 𝑇 ≈ 𝒫
1o) |
47 | 42, 45, 46 | syl2anc 409 |
. . . . . 6
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 𝑇 ≈ 𝒫
1o) |
48 | | nnfi 6838 |
. . . . . . . 8
⊢
(2o ∈ ω → 2o ∈
Fin) |
49 | 29, 48 | mp1i 10 |
. . . . . . 7
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 2o ∈ Fin) |
50 | | enfi 6839 |
. . . . . . . 8
⊢
(𝒫 1o ≈ 2o → (𝒫
1o ∈ Fin ↔ 2o ∈ Fin)) |
51 | 44, 50 | syl 14 |
. . . . . . 7
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → (𝒫 1o ∈ Fin ↔
2o ∈ Fin)) |
52 | 49, 51 | mpbird 166 |
. . . . . 6
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 𝒫 1o ∈
Fin) |
53 | | f1finf1o 6912 |
. . . . . 6
⊢ ((𝑇 ≈ 𝒫 1o
∧ 𝒫 1o ∈ Fin) → (𝐺:𝑇–1-1→𝒫 1o ↔ 𝐺:𝑇–1-1-onto→𝒫 1o)) |
54 | 47, 52, 53 | syl2anc 409 |
. . . . 5
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → (𝐺:𝑇–1-1→𝒫 1o ↔ 𝐺:𝑇–1-1-onto→𝒫 1o)) |
55 | 39, 54 | mpbid 146 |
. . . 4
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 𝐺:𝑇–1-1-onto→𝒫 1o) |
56 | 55, 20 | sylib 121 |
. . 3
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → (𝐺:𝑇–1-1→𝒫 1o ∧ ran 𝐺 = 𝒫
1o)) |
57 | 56 | simprd 113 |
. 2
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → ran 𝐺 = 𝒫 1o) |
58 | 38, 57 | impbida 586 |
1
⊢ ((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) → (ran 𝐺 = 𝒫 1o
↔ (𝑁 = 2o
∧ EXMID))) |