Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pwf1oexmid GIF version

Theorem pwf1oexmid 12884
Description: An exercise related to 𝑁 copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
Hypothesis
Ref Expression
pwle2.t 𝑇 = 𝑥𝑁 ({𝑥} × 1o)
Assertion
Ref Expression
pwf1oexmid ((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) → (ran 𝐺 = 𝒫 1o ↔ (𝑁 = 2oEXMID)))
Distinct variable group:   𝑥,𝑁
Allowed substitution hints:   𝑇(𝑥)   𝐺(𝑥)

Proof of Theorem pwf1oexmid
StepHypRef Expression
1 pwle2.t . . . . . 6 𝑇 = 𝑥𝑁 ({𝑥} × 1o)
21pwle2 12883 . . . . 5 ((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) → 𝑁 ⊆ 2o)
32adantr 272 . . . 4 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝑁 ⊆ 2o)
4 pw1dom2 12880 . . . . . 6 2o ≼ 𝒫 1o
5 iunxpconst 4559 . . . . . . . . . . . 12 𝑥𝑁 ({𝑥} × 1o) = (𝑁 × 1o)
6 df1o2 6280 . . . . . . . . . . . . 13 1o = {∅}
76xpeq2i 4520 . . . . . . . . . . . 12 (𝑁 × 1o) = (𝑁 × {∅})
81, 5, 73eqtri 2139 . . . . . . . . . . 11 𝑇 = (𝑁 × {∅})
9 peano1 4468 . . . . . . . . . . . 12 ∅ ∈ ω
10 xpsneng 6669 . . . . . . . . . . . 12 ((𝑁 ∈ ω ∧ ∅ ∈ ω) → (𝑁 × {∅}) ≈ 𝑁)
119, 10mpan2 419 . . . . . . . . . . 11 (𝑁 ∈ ω → (𝑁 × {∅}) ≈ 𝑁)
128, 11eqbrtrid 3928 . . . . . . . . . 10 (𝑁 ∈ ω → 𝑇𝑁)
1312ad2antrr 477 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝑇𝑁)
1413ensymd 6631 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝑁𝑇)
15 relen 6592 . . . . . . . . . 10 Rel ≈
16 brrelex1 4538 . . . . . . . . . 10 ((Rel ≈ ∧ 𝑇𝑁) → 𝑇 ∈ V)
1715, 13, 16sylancr 408 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝑇 ∈ V)
18 simplr 502 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝐺:𝑇1-1→𝒫 1o)
19 simpr 109 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → ran 𝐺 = 𝒫 1o)
20 dff1o5 5332 . . . . . . . . . 10 (𝐺:𝑇1-1-onto→𝒫 1o ↔ (𝐺:𝑇1-1→𝒫 1o ∧ ran 𝐺 = 𝒫 1o))
2118, 19, 20sylanbrc 411 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝐺:𝑇1-1-onto→𝒫 1o)
22 f1oeng 6605 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝐺:𝑇1-1-onto→𝒫 1o) → 𝑇 ≈ 𝒫 1o)
2317, 21, 22syl2anc 406 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝑇 ≈ 𝒫 1o)
24 entr 6632 . . . . . . . 8 ((𝑁𝑇𝑇 ≈ 𝒫 1o) → 𝑁 ≈ 𝒫 1o)
2514, 23, 24syl2anc 406 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝑁 ≈ 𝒫 1o)
2625ensymd 6631 . . . . . 6 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝒫 1o𝑁)
27 domentr 6639 . . . . . 6 ((2o ≼ 𝒫 1o ∧ 𝒫 1o𝑁) → 2o𝑁)
284, 26, 27sylancr 408 . . . . 5 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 2o𝑁)
29 2onn 6371 . . . . . . 7 2o ∈ ω
30 nndomo 6711 . . . . . . 7 ((2o ∈ ω ∧ 𝑁 ∈ ω) → (2o𝑁 ↔ 2o𝑁))
3129, 30mpan 418 . . . . . 6 (𝑁 ∈ ω → (2o𝑁 ↔ 2o𝑁))
3231ad2antrr 477 . . . . 5 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → (2o𝑁 ↔ 2o𝑁))
3328, 32mpbid 146 . . . 4 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 2o𝑁)
343, 33eqssd 3080 . . 3 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝑁 = 2o)
3526, 34breqtrd 3919 . . . 4 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝒫 1o ≈ 2o)
36 exmidpw 6755 . . . 4 (EXMID ↔ 𝒫 1o ≈ 2o)
3735, 36sylibr 133 . . 3 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → EXMID)
3834, 37jca 302 . 2 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → (𝑁 = 2oEXMID))
39 simplr 502 . . . . 5 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 𝐺:𝑇1-1→𝒫 1o)
4012ad2antrr 477 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 𝑇𝑁)
41 simprl 503 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 𝑁 = 2o)
4240, 41breqtrd 3919 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 𝑇 ≈ 2o)
43 simprr 504 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → EXMID)
4443, 36sylib 121 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 𝒫 1o ≈ 2o)
4544ensymd 6631 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 2o ≈ 𝒫 1o)
46 entr 6632 . . . . . . 7 ((𝑇 ≈ 2o ∧ 2o ≈ 𝒫 1o) → 𝑇 ≈ 𝒫 1o)
4742, 45, 46syl2anc 406 . . . . . 6 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 𝑇 ≈ 𝒫 1o)
48 nnfi 6719 . . . . . . . 8 (2o ∈ ω → 2o ∈ Fin)
4929, 48mp1i 10 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 2o ∈ Fin)
50 enfi 6720 . . . . . . . 8 (𝒫 1o ≈ 2o → (𝒫 1o ∈ Fin ↔ 2o ∈ Fin))
5144, 50syl 14 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → (𝒫 1o ∈ Fin ↔ 2o ∈ Fin))
5249, 51mpbird 166 . . . . . 6 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 𝒫 1o ∈ Fin)
53 f1finf1o 6787 . . . . . 6 ((𝑇 ≈ 𝒫 1o ∧ 𝒫 1o ∈ Fin) → (𝐺:𝑇1-1→𝒫 1o𝐺:𝑇1-1-onto→𝒫 1o))
5447, 52, 53syl2anc 406 . . . . 5 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → (𝐺:𝑇1-1→𝒫 1o𝐺:𝑇1-1-onto→𝒫 1o))
5539, 54mpbid 146 . . . 4 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 𝐺:𝑇1-1-onto→𝒫 1o)
5655, 20sylib 121 . . 3 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → (𝐺:𝑇1-1→𝒫 1o ∧ ran 𝐺 = 𝒫 1o))
5756simprd 113 . 2 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → ran 𝐺 = 𝒫 1o)
5838, 57impbida 568 1 ((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) → (ran 𝐺 = 𝒫 1o ↔ (𝑁 = 2oEXMID)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1314  wcel 1463  Vcvv 2657  wss 3037  c0 3329  𝒫 cpw 3476  {csn 3493   ciun 3779   class class class wbr 3895  EXMIDwem 4078  ωcom 4464   × cxp 4497  ran crn 4500  Rel wrel 4504  1-1wf1 5078  1-1-ontowf1o 5080  1oc1o 6260  2oc2o 6261  cen 6586  cdom 6587  Fincfn 6588
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-exmid 4079  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-1o 6267  df-2o 6268  df-er 6383  df-en 6589  df-dom 6590  df-fin 6591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator