Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pwf1oexmid GIF version

Theorem pwf1oexmid 13879
Description: An exercise related to 𝑁 copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
Hypothesis
Ref Expression
pwle2.t 𝑇 = 𝑥𝑁 ({𝑥} × 1o)
Assertion
Ref Expression
pwf1oexmid ((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) → (ran 𝐺 = 𝒫 1o ↔ (𝑁 = 2oEXMID)))
Distinct variable group:   𝑥,𝑁
Allowed substitution hints:   𝑇(𝑥)   𝐺(𝑥)

Proof of Theorem pwf1oexmid
StepHypRef Expression
1 pwle2.t . . . . . 6 𝑇 = 𝑥𝑁 ({𝑥} × 1o)
21pwle2 13878 . . . . 5 ((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) → 𝑁 ⊆ 2o)
32adantr 274 . . . 4 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝑁 ⊆ 2o)
4 pw1dom2 7183 . . . . . 6 2o ≼ 𝒫 1o
5 iunxpconst 4664 . . . . . . . . . . . 12 𝑥𝑁 ({𝑥} × 1o) = (𝑁 × 1o)
6 df1o2 6397 . . . . . . . . . . . . 13 1o = {∅}
76xpeq2i 4625 . . . . . . . . . . . 12 (𝑁 × 1o) = (𝑁 × {∅})
81, 5, 73eqtri 2190 . . . . . . . . . . 11 𝑇 = (𝑁 × {∅})
9 peano1 4571 . . . . . . . . . . . 12 ∅ ∈ ω
10 xpsneng 6788 . . . . . . . . . . . 12 ((𝑁 ∈ ω ∧ ∅ ∈ ω) → (𝑁 × {∅}) ≈ 𝑁)
119, 10mpan2 422 . . . . . . . . . . 11 (𝑁 ∈ ω → (𝑁 × {∅}) ≈ 𝑁)
128, 11eqbrtrid 4017 . . . . . . . . . 10 (𝑁 ∈ ω → 𝑇𝑁)
1312ad2antrr 480 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝑇𝑁)
1413ensymd 6749 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝑁𝑇)
15 relen 6710 . . . . . . . . . 10 Rel ≈
16 brrelex1 4643 . . . . . . . . . 10 ((Rel ≈ ∧ 𝑇𝑁) → 𝑇 ∈ V)
1715, 13, 16sylancr 411 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝑇 ∈ V)
18 simplr 520 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝐺:𝑇1-1→𝒫 1o)
19 simpr 109 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → ran 𝐺 = 𝒫 1o)
20 dff1o5 5441 . . . . . . . . . 10 (𝐺:𝑇1-1-onto→𝒫 1o ↔ (𝐺:𝑇1-1→𝒫 1o ∧ ran 𝐺 = 𝒫 1o))
2118, 19, 20sylanbrc 414 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝐺:𝑇1-1-onto→𝒫 1o)
22 f1oeng 6723 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝐺:𝑇1-1-onto→𝒫 1o) → 𝑇 ≈ 𝒫 1o)
2317, 21, 22syl2anc 409 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝑇 ≈ 𝒫 1o)
24 entr 6750 . . . . . . . 8 ((𝑁𝑇𝑇 ≈ 𝒫 1o) → 𝑁 ≈ 𝒫 1o)
2514, 23, 24syl2anc 409 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝑁 ≈ 𝒫 1o)
2625ensymd 6749 . . . . . 6 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝒫 1o𝑁)
27 domentr 6757 . . . . . 6 ((2o ≼ 𝒫 1o ∧ 𝒫 1o𝑁) → 2o𝑁)
284, 26, 27sylancr 411 . . . . 5 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 2o𝑁)
29 2onn 6489 . . . . . . 7 2o ∈ ω
30 nndomo 6830 . . . . . . 7 ((2o ∈ ω ∧ 𝑁 ∈ ω) → (2o𝑁 ↔ 2o𝑁))
3129, 30mpan 421 . . . . . 6 (𝑁 ∈ ω → (2o𝑁 ↔ 2o𝑁))
3231ad2antrr 480 . . . . 5 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → (2o𝑁 ↔ 2o𝑁))
3328, 32mpbid 146 . . . 4 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 2o𝑁)
343, 33eqssd 3159 . . 3 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝑁 = 2o)
3526, 34breqtrd 4008 . . . 4 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → 𝒫 1o ≈ 2o)
36 exmidpw 6874 . . . 4 (EXMID ↔ 𝒫 1o ≈ 2o)
3735, 36sylibr 133 . . 3 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → EXMID)
3834, 37jca 304 . 2 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o) → (𝑁 = 2oEXMID))
39 simplr 520 . . . . 5 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 𝐺:𝑇1-1→𝒫 1o)
4012ad2antrr 480 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 𝑇𝑁)
41 simprl 521 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 𝑁 = 2o)
4240, 41breqtrd 4008 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 𝑇 ≈ 2o)
43 simprr 522 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → EXMID)
4443, 36sylib 121 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 𝒫 1o ≈ 2o)
4544ensymd 6749 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 2o ≈ 𝒫 1o)
46 entr 6750 . . . . . . 7 ((𝑇 ≈ 2o ∧ 2o ≈ 𝒫 1o) → 𝑇 ≈ 𝒫 1o)
4742, 45, 46syl2anc 409 . . . . . 6 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 𝑇 ≈ 𝒫 1o)
48 nnfi 6838 . . . . . . . 8 (2o ∈ ω → 2o ∈ Fin)
4929, 48mp1i 10 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 2o ∈ Fin)
50 enfi 6839 . . . . . . . 8 (𝒫 1o ≈ 2o → (𝒫 1o ∈ Fin ↔ 2o ∈ Fin))
5144, 50syl 14 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → (𝒫 1o ∈ Fin ↔ 2o ∈ Fin))
5249, 51mpbird 166 . . . . . 6 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 𝒫 1o ∈ Fin)
53 f1finf1o 6912 . . . . . 6 ((𝑇 ≈ 𝒫 1o ∧ 𝒫 1o ∈ Fin) → (𝐺:𝑇1-1→𝒫 1o𝐺:𝑇1-1-onto→𝒫 1o))
5447, 52, 53syl2anc 409 . . . . 5 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → (𝐺:𝑇1-1→𝒫 1o𝐺:𝑇1-1-onto→𝒫 1o))
5539, 54mpbid 146 . . . 4 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → 𝐺:𝑇1-1-onto→𝒫 1o)
5655, 20sylib 121 . . 3 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → (𝐺:𝑇1-1→𝒫 1o ∧ ran 𝐺 = 𝒫 1o))
5756simprd 113 . 2 (((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) ∧ (𝑁 = 2oEXMID)) → ran 𝐺 = 𝒫 1o)
5838, 57impbida 586 1 ((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) → (ran 𝐺 = 𝒫 1o ↔ (𝑁 = 2oEXMID)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  Vcvv 2726  wss 3116  c0 3409  𝒫 cpw 3559  {csn 3576   ciun 3866   class class class wbr 3982  EXMIDwem 4173  ωcom 4567   × cxp 4602  ran crn 4605  Rel wrel 4609  1-1wf1 5185  1-1-ontowf1o 5187  1oc1o 6377  2oc2o 6378  cen 6704  cdom 6705  Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-exmid 4174  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1o 6384  df-2o 6385  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator