Proof of Theorem pwf1oexmid
| Step | Hyp | Ref
 | Expression | 
| 1 |   | pwle2.t | 
. . . . . 6
⊢ 𝑇 = ∪ 𝑥 ∈ 𝑁 ({𝑥} × 1o) | 
| 2 | 1 | pwle2 15643 | 
. . . . 5
⊢ ((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) → 𝑁 ⊆
2o) | 
| 3 | 2 | adantr 276 | 
. . . 4
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝑁 ⊆
2o) | 
| 4 |   | pw1dom2 7294 | 
. . . . . 6
⊢
2o ≼ 𝒫 1o | 
| 5 |   | iunxpconst 4723 | 
. . . . . . . . . . . 12
⊢ ∪ 𝑥 ∈ 𝑁 ({𝑥} × 1o) = (𝑁 × 1o) | 
| 6 |   | df1o2 6487 | 
. . . . . . . . . . . . 13
⊢
1o = {∅} | 
| 7 | 6 | xpeq2i 4684 | 
. . . . . . . . . . . 12
⊢ (𝑁 × 1o) = (𝑁 ×
{∅}) | 
| 8 | 1, 5, 7 | 3eqtri 2221 | 
. . . . . . . . . . 11
⊢ 𝑇 = (𝑁 × {∅}) | 
| 9 |   | peano1 4630 | 
. . . . . . . . . . . 12
⊢ ∅
∈ ω | 
| 10 |   | xpsneng 6881 | 
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ω ∧ ∅
∈ ω) → (𝑁
× {∅}) ≈ 𝑁) | 
| 11 | 9, 10 | mpan2 425 | 
. . . . . . . . . . 11
⊢ (𝑁 ∈ ω → (𝑁 × {∅}) ≈
𝑁) | 
| 12 | 8, 11 | eqbrtrid 4068 | 
. . . . . . . . . 10
⊢ (𝑁 ∈ ω → 𝑇 ≈ 𝑁) | 
| 13 | 12 | ad2antrr 488 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝑇 ≈ 𝑁) | 
| 14 | 13 | ensymd 6842 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝑁 ≈ 𝑇) | 
| 15 |   | relen 6803 | 
. . . . . . . . . 10
⊢ Rel
≈ | 
| 16 |   | brrelex1 4702 | 
. . . . . . . . . 10
⊢ ((Rel
≈ ∧ 𝑇 ≈
𝑁) → 𝑇 ∈ V) | 
| 17 | 15, 13, 16 | sylancr 414 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝑇 ∈
V) | 
| 18 |   | simplr 528 | 
. . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝐺:𝑇–1-1→𝒫 1o) | 
| 19 |   | simpr 110 | 
. . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ ran 𝐺 = 𝒫
1o) | 
| 20 |   | dff1o5 5513 | 
. . . . . . . . . 10
⊢ (𝐺:𝑇–1-1-onto→𝒫 1o ↔ (𝐺:𝑇–1-1→𝒫 1o ∧ ran 𝐺 = 𝒫
1o)) | 
| 21 | 18, 19, 20 | sylanbrc 417 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝐺:𝑇–1-1-onto→𝒫 1o) | 
| 22 |   | f1oeng 6816 | 
. . . . . . . . 9
⊢ ((𝑇 ∈ V ∧ 𝐺:𝑇–1-1-onto→𝒫 1o) → 𝑇 ≈ 𝒫
1o) | 
| 23 | 17, 21, 22 | syl2anc 411 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝑇 ≈ 𝒫
1o) | 
| 24 |   | entr 6843 | 
. . . . . . . 8
⊢ ((𝑁 ≈ 𝑇 ∧ 𝑇 ≈ 𝒫 1o) →
𝑁 ≈ 𝒫
1o) | 
| 25 | 14, 23, 24 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝑁 ≈ 𝒫
1o) | 
| 26 | 25 | ensymd 6842 | 
. . . . . 6
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝒫 1o ≈ 𝑁) | 
| 27 |   | domentr 6850 | 
. . . . . 6
⊢
((2o ≼ 𝒫 1o ∧ 𝒫
1o ≈ 𝑁)
→ 2o ≼ 𝑁) | 
| 28 | 4, 26, 27 | sylancr 414 | 
. . . . 5
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 2o ≼ 𝑁) | 
| 29 |   | 2onn 6579 | 
. . . . . . 7
⊢
2o ∈ ω | 
| 30 |   | nndomo 6925 | 
. . . . . . 7
⊢
((2o ∈ ω ∧ 𝑁 ∈ ω) → (2o
≼ 𝑁 ↔
2o ⊆ 𝑁)) | 
| 31 | 29, 30 | mpan 424 | 
. . . . . 6
⊢ (𝑁 ∈ ω →
(2o ≼ 𝑁
↔ 2o ⊆ 𝑁)) | 
| 32 | 31 | ad2antrr 488 | 
. . . . 5
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ (2o ≼ 𝑁 ↔ 2o ⊆ 𝑁)) | 
| 33 | 28, 32 | mpbid 147 | 
. . . 4
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 2o ⊆ 𝑁) | 
| 34 | 3, 33 | eqssd 3200 | 
. . 3
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝑁 =
2o) | 
| 35 | 26, 34 | breqtrd 4059 | 
. . . 4
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ 𝒫 1o ≈ 2o) | 
| 36 |   | exmidpw 6969 | 
. . . 4
⊢
(EXMID ↔ 𝒫 1o ≈
2o) | 
| 37 | 35, 36 | sylibr 134 | 
. . 3
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ EXMID) | 
| 38 | 34, 37 | jca 306 | 
. 2
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ ran 𝐺 = 𝒫 1o)
→ (𝑁 = 2o
∧ EXMID)) | 
| 39 |   | simplr 528 | 
. . . . 5
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 𝐺:𝑇–1-1→𝒫 1o) | 
| 40 | 12 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 𝑇 ≈ 𝑁) | 
| 41 |   | simprl 529 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 𝑁 = 2o) | 
| 42 | 40, 41 | breqtrd 4059 | 
. . . . . . 7
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 𝑇 ≈ 2o) | 
| 43 |   | simprr 531 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → EXMID) | 
| 44 | 43, 36 | sylib 122 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 𝒫 1o ≈
2o) | 
| 45 | 44 | ensymd 6842 | 
. . . . . . 7
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 2o ≈ 𝒫
1o) | 
| 46 |   | entr 6843 | 
. . . . . . 7
⊢ ((𝑇 ≈ 2o ∧
2o ≈ 𝒫 1o) → 𝑇 ≈ 𝒫
1o) | 
| 47 | 42, 45, 46 | syl2anc 411 | 
. . . . . 6
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 𝑇 ≈ 𝒫
1o) | 
| 48 |   | nnfi 6933 | 
. . . . . . . 8
⊢
(2o ∈ ω → 2o ∈
Fin) | 
| 49 | 29, 48 | mp1i 10 | 
. . . . . . 7
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 2o ∈ Fin) | 
| 50 |   | enfi 6934 | 
. . . . . . . 8
⊢
(𝒫 1o ≈ 2o → (𝒫
1o ∈ Fin ↔ 2o ∈ Fin)) | 
| 51 | 44, 50 | syl 14 | 
. . . . . . 7
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → (𝒫 1o ∈ Fin ↔
2o ∈ Fin)) | 
| 52 | 49, 51 | mpbird 167 | 
. . . . . 6
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 𝒫 1o ∈
Fin) | 
| 53 |   | f1finf1o 7013 | 
. . . . . 6
⊢ ((𝑇 ≈ 𝒫 1o
∧ 𝒫 1o ∈ Fin) → (𝐺:𝑇–1-1→𝒫 1o ↔ 𝐺:𝑇–1-1-onto→𝒫 1o)) | 
| 54 | 47, 52, 53 | syl2anc 411 | 
. . . . 5
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → (𝐺:𝑇–1-1→𝒫 1o ↔ 𝐺:𝑇–1-1-onto→𝒫 1o)) | 
| 55 | 39, 54 | mpbid 147 | 
. . . 4
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → 𝐺:𝑇–1-1-onto→𝒫 1o) | 
| 56 | 55, 20 | sylib 122 | 
. . 3
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → (𝐺:𝑇–1-1→𝒫 1o ∧ ran 𝐺 = 𝒫
1o)) | 
| 57 | 56 | simprd 114 | 
. 2
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ (𝑁 = 2o ∧
EXMID)) → ran 𝐺 = 𝒫 1o) | 
| 58 | 38, 57 | impbida 596 | 
1
⊢ ((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) → (ran 𝐺 = 𝒫 1o
↔ (𝑁 = 2o
∧ EXMID))) |