Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eninl | GIF version |
Description: Equinumerosity of a set and its image under left injection. (Contributed by Jim Kingdon, 30-Jul-2023.) |
Ref | Expression |
---|---|
eninl | ⊢ (𝐴 ∈ 𝑉 → (inl “ 𝐴) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djulf1or 6990 | . . . 4 ⊢ (inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) | |
2 | f1oeng 6695 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴)) → 𝐴 ≈ ({∅} × 𝐴)) | |
3 | 1, 2 | mpan2 422 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ ({∅} × 𝐴)) |
4 | df-ima 4596 | . . . 4 ⊢ (inl “ 𝐴) = ran (inl ↾ 𝐴) | |
5 | dff1o5 5420 | . . . . . 6 ⊢ ((inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) ↔ ((inl ↾ 𝐴):𝐴–1-1→({∅} × 𝐴) ∧ ran (inl ↾ 𝐴) = ({∅} × 𝐴))) | |
6 | 1, 5 | mpbi 144 | . . . . 5 ⊢ ((inl ↾ 𝐴):𝐴–1-1→({∅} × 𝐴) ∧ ran (inl ↾ 𝐴) = ({∅} × 𝐴)) |
7 | 6 | simpri 112 | . . . 4 ⊢ ran (inl ↾ 𝐴) = ({∅} × 𝐴) |
8 | 4, 7 | eqtri 2178 | . . 3 ⊢ (inl “ 𝐴) = ({∅} × 𝐴) |
9 | 3, 8 | breqtrrdi 4006 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (inl “ 𝐴)) |
10 | 9 | ensymd 6721 | 1 ⊢ (𝐴 ∈ 𝑉 → (inl “ 𝐴) ≈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 ∅c0 3394 {csn 3560 class class class wbr 3965 × cxp 4581 ran crn 4584 ↾ cres 4585 “ cima 4586 –1-1→wf1 5164 –1-1-onto→wf1o 5166 ≈ cen 6676 inlcinl 6979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-1st 6082 df-2nd 6083 df-er 6473 df-en 6679 df-inl 6981 |
This theorem is referenced by: endjudisj 7128 djuen 7129 |
Copyright terms: Public domain | W3C validator |