ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eninl GIF version

Theorem eninl 7031
Description: Equinumerosity of a set and its image under left injection. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
eninl (𝐴𝑉 → (inl “ 𝐴) ≈ 𝐴)

Proof of Theorem eninl
StepHypRef Expression
1 djulf1or 6990 . . . 4 (inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴)
2 f1oeng 6695 . . . 4 ((𝐴𝑉 ∧ (inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴)) → 𝐴 ≈ ({∅} × 𝐴))
31, 2mpan2 422 . . 3 (𝐴𝑉𝐴 ≈ ({∅} × 𝐴))
4 df-ima 4596 . . . 4 (inl “ 𝐴) = ran (inl ↾ 𝐴)
5 dff1o5 5420 . . . . . 6 ((inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴) ↔ ((inl ↾ 𝐴):𝐴1-1→({∅} × 𝐴) ∧ ran (inl ↾ 𝐴) = ({∅} × 𝐴)))
61, 5mpbi 144 . . . . 5 ((inl ↾ 𝐴):𝐴1-1→({∅} × 𝐴) ∧ ran (inl ↾ 𝐴) = ({∅} × 𝐴))
76simpri 112 . . . 4 ran (inl ↾ 𝐴) = ({∅} × 𝐴)
84, 7eqtri 2178 . . 3 (inl “ 𝐴) = ({∅} × 𝐴)
93, 8breqtrrdi 4006 . 2 (𝐴𝑉𝐴 ≈ (inl “ 𝐴))
109ensymd 6721 1 (𝐴𝑉 → (inl “ 𝐴) ≈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wcel 2128  c0 3394  {csn 3560   class class class wbr 3965   × cxp 4581  ran crn 4584  cres 4585  cima 4586  1-1wf1 5164  1-1-ontowf1o 5166  cen 6676  inlcinl 6979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-1st 6082  df-2nd 6083  df-er 6473  df-en 6679  df-inl 6981
This theorem is referenced by:  endjudisj  7128  djuen  7129
  Copyright terms: Public domain W3C validator