ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eninl GIF version

Theorem eninl 7252
Description: Equinumerosity of a set and its image under left injection. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
eninl (𝐴𝑉 → (inl “ 𝐴) ≈ 𝐴)

Proof of Theorem eninl
StepHypRef Expression
1 djulf1or 7211 . . . 4 (inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴)
2 f1oeng 6898 . . . 4 ((𝐴𝑉 ∧ (inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴)) → 𝐴 ≈ ({∅} × 𝐴))
31, 2mpan2 425 . . 3 (𝐴𝑉𝐴 ≈ ({∅} × 𝐴))
4 df-ima 4729 . . . 4 (inl “ 𝐴) = ran (inl ↾ 𝐴)
5 dff1o5 5577 . . . . . 6 ((inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴) ↔ ((inl ↾ 𝐴):𝐴1-1→({∅} × 𝐴) ∧ ran (inl ↾ 𝐴) = ({∅} × 𝐴)))
61, 5mpbi 145 . . . . 5 ((inl ↾ 𝐴):𝐴1-1→({∅} × 𝐴) ∧ ran (inl ↾ 𝐴) = ({∅} × 𝐴))
76simpri 113 . . . 4 ran (inl ↾ 𝐴) = ({∅} × 𝐴)
84, 7eqtri 2250 . . 3 (inl “ 𝐴) = ({∅} × 𝐴)
93, 8breqtrrdi 4124 . 2 (𝐴𝑉𝐴 ≈ (inl “ 𝐴))
109ensymd 6925 1 (𝐴𝑉 → (inl “ 𝐴) ≈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  c0 3491  {csn 3666   class class class wbr 4082   × cxp 4714  ran crn 4717  cres 4718  cima 4719  1-1wf1 5311  1-1-ontowf1o 5313  cen 6875  inlcinl 7200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-1st 6276  df-2nd 6277  df-er 6670  df-en 6878  df-inl 7202
This theorem is referenced by:  endjudisj  7380  djuen  7381
  Copyright terms: Public domain W3C validator