| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eninl | GIF version | ||
| Description: Equinumerosity of a set and its image under left injection. (Contributed by Jim Kingdon, 30-Jul-2023.) |
| Ref | Expression |
|---|---|
| eninl | ⊢ (𝐴 ∈ 𝑉 → (inl “ 𝐴) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djulf1or 7172 | . . . 4 ⊢ (inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) | |
| 2 | f1oeng 6860 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴)) → 𝐴 ≈ ({∅} × 𝐴)) | |
| 3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ ({∅} × 𝐴)) |
| 4 | df-ima 4695 | . . . 4 ⊢ (inl “ 𝐴) = ran (inl ↾ 𝐴) | |
| 5 | dff1o5 5542 | . . . . . 6 ⊢ ((inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) ↔ ((inl ↾ 𝐴):𝐴–1-1→({∅} × 𝐴) ∧ ran (inl ↾ 𝐴) = ({∅} × 𝐴))) | |
| 6 | 1, 5 | mpbi 145 | . . . . 5 ⊢ ((inl ↾ 𝐴):𝐴–1-1→({∅} × 𝐴) ∧ ran (inl ↾ 𝐴) = ({∅} × 𝐴)) |
| 7 | 6 | simpri 113 | . . . 4 ⊢ ran (inl ↾ 𝐴) = ({∅} × 𝐴) |
| 8 | 4, 7 | eqtri 2227 | . . 3 ⊢ (inl “ 𝐴) = ({∅} × 𝐴) |
| 9 | 3, 8 | breqtrrdi 4092 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (inl “ 𝐴)) |
| 10 | 9 | ensymd 6887 | 1 ⊢ (𝐴 ∈ 𝑉 → (inl “ 𝐴) ≈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∅c0 3464 {csn 3637 class class class wbr 4050 × cxp 4680 ran crn 4683 ↾ cres 4684 “ cima 4685 –1-1→wf1 5276 –1-1-onto→wf1o 5278 ≈ cen 6837 inlcinl 7161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-1st 6238 df-2nd 6239 df-er 6632 df-en 6840 df-inl 7163 |
| This theorem is referenced by: endjudisj 7337 djuen 7338 |
| Copyright terms: Public domain | W3C validator |