Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eninr | GIF version |
Description: Equinumerosity of a set and its image under right injection. (Contributed by Jim Kingdon, 30-Jul-2023.) |
Ref | Expression |
---|---|
eninr | ⊢ (𝐴 ∈ 𝑉 → (inr “ 𝐴) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djurf1or 7034 | . . . 4 ⊢ (inr ↾ 𝐴):𝐴–1-1-onto→({1o} × 𝐴) | |
2 | f1oeng 6735 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (inr ↾ 𝐴):𝐴–1-1-onto→({1o} × 𝐴)) → 𝐴 ≈ ({1o} × 𝐴)) | |
3 | 1, 2 | mpan2 423 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ ({1o} × 𝐴)) |
4 | df-ima 4624 | . . . 4 ⊢ (inr “ 𝐴) = ran (inr ↾ 𝐴) | |
5 | dff1o5 5451 | . . . . . 6 ⊢ ((inr ↾ 𝐴):𝐴–1-1-onto→({1o} × 𝐴) ↔ ((inr ↾ 𝐴):𝐴–1-1→({1o} × 𝐴) ∧ ran (inr ↾ 𝐴) = ({1o} × 𝐴))) | |
6 | 1, 5 | mpbi 144 | . . . . 5 ⊢ ((inr ↾ 𝐴):𝐴–1-1→({1o} × 𝐴) ∧ ran (inr ↾ 𝐴) = ({1o} × 𝐴)) |
7 | 6 | simpri 112 | . . . 4 ⊢ ran (inr ↾ 𝐴) = ({1o} × 𝐴) |
8 | 4, 7 | eqtri 2191 | . . 3 ⊢ (inr “ 𝐴) = ({1o} × 𝐴) |
9 | 3, 8 | breqtrrdi 4031 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (inr “ 𝐴)) |
10 | 9 | ensymd 6761 | 1 ⊢ (𝐴 ∈ 𝑉 → (inr “ 𝐴) ≈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 {csn 3583 class class class wbr 3989 × cxp 4609 ran crn 4612 ↾ cres 4613 “ cima 4614 –1-1→wf1 5195 –1-1-onto→wf1o 5197 1oc1o 6388 ≈ cen 6716 inrcinr 7023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-er 6513 df-en 6719 df-inr 7025 |
This theorem is referenced by: endjudisj 7187 djuen 7188 |
Copyright terms: Public domain | W3C validator |