| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eninr | GIF version | ||
| Description: Equinumerosity of a set and its image under right injection. (Contributed by Jim Kingdon, 30-Jul-2023.) |
| Ref | Expression |
|---|---|
| eninr | ⊢ (𝐴 ∈ 𝑉 → (inr “ 𝐴) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djurf1or 7180 | . . . 4 ⊢ (inr ↾ 𝐴):𝐴–1-1-onto→({1o} × 𝐴) | |
| 2 | f1oeng 6866 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (inr ↾ 𝐴):𝐴–1-1-onto→({1o} × 𝐴)) → 𝐴 ≈ ({1o} × 𝐴)) | |
| 3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ ({1o} × 𝐴)) |
| 4 | df-ima 4701 | . . . 4 ⊢ (inr “ 𝐴) = ran (inr ↾ 𝐴) | |
| 5 | dff1o5 5548 | . . . . . 6 ⊢ ((inr ↾ 𝐴):𝐴–1-1-onto→({1o} × 𝐴) ↔ ((inr ↾ 𝐴):𝐴–1-1→({1o} × 𝐴) ∧ ran (inr ↾ 𝐴) = ({1o} × 𝐴))) | |
| 6 | 1, 5 | mpbi 145 | . . . . 5 ⊢ ((inr ↾ 𝐴):𝐴–1-1→({1o} × 𝐴) ∧ ran (inr ↾ 𝐴) = ({1o} × 𝐴)) |
| 7 | 6 | simpri 113 | . . . 4 ⊢ ran (inr ↾ 𝐴) = ({1o} × 𝐴) |
| 8 | 4, 7 | eqtri 2227 | . . 3 ⊢ (inr “ 𝐴) = ({1o} × 𝐴) |
| 9 | 3, 8 | breqtrrdi 4096 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (inr “ 𝐴)) |
| 10 | 9 | ensymd 6893 | 1 ⊢ (𝐴 ∈ 𝑉 → (inr “ 𝐴) ≈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {csn 3638 class class class wbr 4054 × cxp 4686 ran crn 4689 ↾ cres 4690 “ cima 4691 –1-1→wf1 5282 –1-1-onto→wf1o 5284 1oc1o 6513 ≈ cen 6843 inrcinr 7169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-1st 6244 df-2nd 6245 df-1o 6520 df-er 6638 df-en 6846 df-inr 7171 |
| This theorem is referenced by: endjudisj 7348 djuen 7349 |
| Copyright terms: Public domain | W3C validator |