| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eninr | GIF version | ||
| Description: Equinumerosity of a set and its image under right injection. (Contributed by Jim Kingdon, 30-Jul-2023.) |
| Ref | Expression |
|---|---|
| eninr | ⊢ (𝐴 ∈ 𝑉 → (inr “ 𝐴) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djurf1or 7159 | . . . 4 ⊢ (inr ↾ 𝐴):𝐴–1-1-onto→({1o} × 𝐴) | |
| 2 | f1oeng 6848 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (inr ↾ 𝐴):𝐴–1-1-onto→({1o} × 𝐴)) → 𝐴 ≈ ({1o} × 𝐴)) | |
| 3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ ({1o} × 𝐴)) |
| 4 | df-ima 4688 | . . . 4 ⊢ (inr “ 𝐴) = ran (inr ↾ 𝐴) | |
| 5 | dff1o5 5531 | . . . . . 6 ⊢ ((inr ↾ 𝐴):𝐴–1-1-onto→({1o} × 𝐴) ↔ ((inr ↾ 𝐴):𝐴–1-1→({1o} × 𝐴) ∧ ran (inr ↾ 𝐴) = ({1o} × 𝐴))) | |
| 6 | 1, 5 | mpbi 145 | . . . . 5 ⊢ ((inr ↾ 𝐴):𝐴–1-1→({1o} × 𝐴) ∧ ran (inr ↾ 𝐴) = ({1o} × 𝐴)) |
| 7 | 6 | simpri 113 | . . . 4 ⊢ ran (inr ↾ 𝐴) = ({1o} × 𝐴) |
| 8 | 4, 7 | eqtri 2226 | . . 3 ⊢ (inr “ 𝐴) = ({1o} × 𝐴) |
| 9 | 3, 8 | breqtrrdi 4086 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (inr “ 𝐴)) |
| 10 | 9 | ensymd 6875 | 1 ⊢ (𝐴 ∈ 𝑉 → (inr “ 𝐴) ≈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 {csn 3633 class class class wbr 4044 × cxp 4673 ran crn 4676 ↾ cres 4677 “ cima 4678 –1-1→wf1 5268 –1-1-onto→wf1o 5270 1oc1o 6495 ≈ cen 6825 inrcinr 7148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1st 6226 df-2nd 6227 df-1o 6502 df-er 6620 df-en 6828 df-inr 7150 |
| This theorem is referenced by: endjudisj 7322 djuen 7323 |
| Copyright terms: Public domain | W3C validator |