| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eninr | GIF version | ||
| Description: Equinumerosity of a set and its image under right injection. (Contributed by Jim Kingdon, 30-Jul-2023.) | 
| Ref | Expression | 
|---|---|
| eninr | ⊢ (𝐴 ∈ 𝑉 → (inr “ 𝐴) ≈ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | djurf1or 7123 | . . . 4 ⊢ (inr ↾ 𝐴):𝐴–1-1-onto→({1o} × 𝐴) | |
| 2 | f1oeng 6816 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (inr ↾ 𝐴):𝐴–1-1-onto→({1o} × 𝐴)) → 𝐴 ≈ ({1o} × 𝐴)) | |
| 3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ ({1o} × 𝐴)) | 
| 4 | df-ima 4676 | . . . 4 ⊢ (inr “ 𝐴) = ran (inr ↾ 𝐴) | |
| 5 | dff1o5 5513 | . . . . . 6 ⊢ ((inr ↾ 𝐴):𝐴–1-1-onto→({1o} × 𝐴) ↔ ((inr ↾ 𝐴):𝐴–1-1→({1o} × 𝐴) ∧ ran (inr ↾ 𝐴) = ({1o} × 𝐴))) | |
| 6 | 1, 5 | mpbi 145 | . . . . 5 ⊢ ((inr ↾ 𝐴):𝐴–1-1→({1o} × 𝐴) ∧ ran (inr ↾ 𝐴) = ({1o} × 𝐴)) | 
| 7 | 6 | simpri 113 | . . . 4 ⊢ ran (inr ↾ 𝐴) = ({1o} × 𝐴) | 
| 8 | 4, 7 | eqtri 2217 | . . 3 ⊢ (inr “ 𝐴) = ({1o} × 𝐴) | 
| 9 | 3, 8 | breqtrrdi 4075 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (inr “ 𝐴)) | 
| 10 | 9 | ensymd 6842 | 1 ⊢ (𝐴 ∈ 𝑉 → (inr “ 𝐴) ≈ 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {csn 3622 class class class wbr 4033 × cxp 4661 ran crn 4664 ↾ cres 4665 “ cima 4666 –1-1→wf1 5255 –1-1-onto→wf1o 5257 1oc1o 6467 ≈ cen 6797 inrcinr 7112 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1st 6198 df-2nd 6199 df-1o 6474 df-er 6592 df-en 6800 df-inr 7114 | 
| This theorem is referenced by: endjudisj 7277 djuen 7278 | 
| Copyright terms: Public domain | W3C validator |