ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eninr GIF version

Theorem eninr 7261
Description: Equinumerosity of a set and its image under right injection. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
eninr (𝐴𝑉 → (inr “ 𝐴) ≈ 𝐴)

Proof of Theorem eninr
StepHypRef Expression
1 djurf1or 7220 . . . 4 (inr ↾ 𝐴):𝐴1-1-onto→({1o} × 𝐴)
2 f1oeng 6906 . . . 4 ((𝐴𝑉 ∧ (inr ↾ 𝐴):𝐴1-1-onto→({1o} × 𝐴)) → 𝐴 ≈ ({1o} × 𝐴))
31, 2mpan2 425 . . 3 (𝐴𝑉𝐴 ≈ ({1o} × 𝐴))
4 df-ima 4731 . . . 4 (inr “ 𝐴) = ran (inr ↾ 𝐴)
5 dff1o5 5580 . . . . . 6 ((inr ↾ 𝐴):𝐴1-1-onto→({1o} × 𝐴) ↔ ((inr ↾ 𝐴):𝐴1-1→({1o} × 𝐴) ∧ ran (inr ↾ 𝐴) = ({1o} × 𝐴)))
61, 5mpbi 145 . . . . 5 ((inr ↾ 𝐴):𝐴1-1→({1o} × 𝐴) ∧ ran (inr ↾ 𝐴) = ({1o} × 𝐴))
76simpri 113 . . . 4 ran (inr ↾ 𝐴) = ({1o} × 𝐴)
84, 7eqtri 2250 . . 3 (inr “ 𝐴) = ({1o} × 𝐴)
93, 8breqtrrdi 4124 . 2 (𝐴𝑉𝐴 ≈ (inr “ 𝐴))
109ensymd 6933 1 (𝐴𝑉 → (inr “ 𝐴) ≈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  {csn 3666   class class class wbr 4082   × cxp 4716  ran crn 4719  cres 4720  cima 4721  1-1wf1 5314  1-1-ontowf1o 5316  1oc1o 6553  cen 6883  inrcinr 7209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285  df-1o 6560  df-er 6678  df-en 6886  df-inr 7211
This theorem is referenced by:  endjudisj  7388  djuen  7389
  Copyright terms: Public domain W3C validator