ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnnctlemct GIF version

Theorem ssnnctlemct 13012
Description: Lemma for ssnnct 13013. The result. (Contributed by Jim Kingdon, 29-Sep-2024.)
Hypothesis
Ref Expression
ssnnctlem.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 1)
Assertion
Ref Expression
ssnnctlemct ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
Distinct variable groups:   𝐴,𝑓   𝑥,𝐴   𝑓,𝐺
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem ssnnctlemct
Dummy variables 𝑔 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2292 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
21dcbid 843 . . . 4 (𝑥 = 𝑧 → (DECID 𝑥𝐴DECID 𝑧𝐴))
32cbvralv 2765 . . 3 (∀𝑥 ∈ ℕ DECID 𝑥𝐴 ↔ ∀𝑧 ∈ ℕ DECID 𝑧𝐴)
4 imassrn 5078 . . . . 5 (𝐺𝐴) ⊆ ran 𝐺
5 1z 9468 . . . . . . . . . 10 1 ∈ ℤ
6 id 19 . . . . . . . . . . 11 (1 ∈ ℤ → 1 ∈ ℤ)
7 ssnnctlem.g . . . . . . . . . . 11 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 1)
86, 7frec2uzf1od 10623 . . . . . . . . . 10 (1 ∈ ℤ → 𝐺:ω–1-1-onto→(ℤ‘1))
95, 8ax-mp 5 . . . . . . . . 9 𝐺:ω–1-1-onto→(ℤ‘1)
10 nnuz 9754 . . . . . . . . . 10 ℕ = (ℤ‘1)
11 f1oeq3 5561 . . . . . . . . . 10 (ℕ = (ℤ‘1) → (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1)))
1210, 11ax-mp 5 . . . . . . . . 9 (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1))
139, 12mpbir 146 . . . . . . . 8 𝐺:ω–1-1-onto→ℕ
14 f1ocnv 5584 . . . . . . . 8 (𝐺:ω–1-1-onto→ℕ → 𝐺:ℕ–1-1-onto→ω)
1513, 14ax-mp 5 . . . . . . 7 𝐺:ℕ–1-1-onto→ω
16 dff1o5 5580 . . . . . . 7 (𝐺:ℕ–1-1-onto→ω ↔ (𝐺:ℕ–1-1→ω ∧ ran 𝐺 = ω))
1715, 16mpbi 145 . . . . . 6 (𝐺:ℕ–1-1→ω ∧ ran 𝐺 = ω)
1817simpri 113 . . . . 5 ran 𝐺 = ω
194, 18sseqtri 3258 . . . 4 (𝐺𝐴) ⊆ ω
20 eleq1 2292 . . . . . . . 8 (𝑧 = (𝐺𝑦) → (𝑧𝐴 ↔ (𝐺𝑦) ∈ 𝐴))
2120dcbid 843 . . . . . . 7 (𝑧 = (𝐺𝑦) → (DECID 𝑧𝐴DECID (𝐺𝑦) ∈ 𝐴))
22 simplr 528 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ∀𝑧 ∈ ℕ DECID 𝑧𝐴)
23 f1of 5571 . . . . . . . . 9 (𝐺:ω–1-1-onto→ℕ → 𝐺:ω⟶ℕ)
2413, 23mp1i 10 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → 𝐺:ω⟶ℕ)
25 simpr 110 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → 𝑦 ∈ ω)
2624, 25ffvelcdmd 5770 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → (𝐺𝑦) ∈ ℕ)
2721, 22, 26rspcdva 2912 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → DECID (𝐺𝑦) ∈ 𝐴)
28 f1of1 5570 . . . . . . . . . 10 (𝐺:ℕ–1-1-onto→ω → 𝐺:ℕ–1-1→ω)
2915, 28ax-mp 5 . . . . . . . . 9 𝐺:ℕ–1-1→ω
30 simpll 527 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → 𝐴 ⊆ ℕ)
31 f1elima 5896 . . . . . . . . 9 ((𝐺:ℕ–1-1→ω ∧ (𝐺𝑦) ∈ ℕ ∧ 𝐴 ⊆ ℕ) → ((𝐺‘(𝐺𝑦)) ∈ (𝐺𝐴) ↔ (𝐺𝑦) ∈ 𝐴))
3229, 26, 30, 31mp3an2i 1376 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ((𝐺‘(𝐺𝑦)) ∈ (𝐺𝐴) ↔ (𝐺𝑦) ∈ 𝐴))
33 f1ocnvfv1 5900 . . . . . . . . . . 11 ((𝐺:ω–1-1-onto→ℕ ∧ 𝑦 ∈ ω) → (𝐺‘(𝐺𝑦)) = 𝑦)
3413, 33mpan 424 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺‘(𝐺𝑦)) = 𝑦)
3534adantl 277 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → (𝐺‘(𝐺𝑦)) = 𝑦)
3635eleq1d 2298 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ((𝐺‘(𝐺𝑦)) ∈ (𝐺𝐴) ↔ 𝑦 ∈ (𝐺𝐴)))
3732, 36bitr3d 190 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ((𝐺𝑦) ∈ 𝐴𝑦 ∈ (𝐺𝐴)))
3837dcbid 843 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → (DECID (𝐺𝑦) ∈ 𝐴DECID 𝑦 ∈ (𝐺𝐴)))
3927, 38mpbid 147 . . . . 5 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → DECID 𝑦 ∈ (𝐺𝐴))
4039ralrimiva 2603 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) → ∀𝑦 ∈ ω DECID 𝑦 ∈ (𝐺𝐴))
41 ssomct 13011 . . . 4 (((𝐺𝐴) ⊆ ω ∧ ∀𝑦 ∈ ω DECID 𝑦 ∈ (𝐺𝐴)) → ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o))
4219, 40, 41sylancr 414 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) → ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o))
433, 42sylan2b 287 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o))
44 nnex 9112 . . . . . 6 ℕ ∈ V
4544ssex 4220 . . . . 5 (𝐴 ⊆ ℕ → 𝐴 ∈ V)
46 f1ores 5586 . . . . . 6 ((𝐺:ℕ–1-1→ω ∧ 𝐴 ⊆ ℕ) → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
4729, 46mpan 424 . . . . 5 (𝐴 ⊆ ℕ → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
48 f1oeng 6906 . . . . 5 ((𝐴 ∈ V ∧ (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴)) → 𝐴 ≈ (𝐺𝐴))
4945, 47, 48syl2anc 411 . . . 4 (𝐴 ⊆ ℕ → 𝐴 ≈ (𝐺𝐴))
50 enct 12999 . . . 4 (𝐴 ≈ (𝐺𝐴) → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o)))
5149, 50syl 14 . . 3 (𝐴 ⊆ ℕ → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o)))
5251adantr 276 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o)))
5343, 52mpbird 167 1 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 839   = wceq 1395  wex 1538  wcel 2200  wral 2508  Vcvv 2799  wss 3197   class class class wbr 4082  cmpt 4144  ωcom 4681  ccnv 4717  ran crn 4719  cres 4720  cima 4721  wf 5313  1-1wf1 5314  ontowfo 5315  1-1-ontowf1o 5316  cfv 5317  (class class class)co 6000  freccfrec 6534  1oc1o 6553  cen 6883  cdju 7200  1c1 7996   + caddc 7998  cn 9106  cz 9442  cuz 9718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dju 7201  df-inl 7210  df-inr 7211  df-case 7247  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719
This theorem is referenced by:  ssnnct  13013
  Copyright terms: Public domain W3C validator