Step | Hyp | Ref
| Expression |
1 | | eleq1 2233 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
2 | 1 | dcbid 833 |
. . . 4
⊢ (𝑥 = 𝑧 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑧 ∈ 𝐴)) |
3 | 2 | cbvralv 2696 |
. . 3
⊢
(∀𝑥 ∈
ℕ DECID 𝑥 ∈ 𝐴 ↔ ∀𝑧 ∈ ℕ DECID 𝑧 ∈ 𝐴) |
4 | | imassrn 4964 |
. . . . 5
⊢ (◡𝐺 “ 𝐴) ⊆ ran ◡𝐺 |
5 | | 1z 9238 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
6 | | id 19 |
. . . . . . . . . . 11
⊢ (1 ∈
ℤ → 1 ∈ ℤ) |
7 | | ssnnctlem.g |
. . . . . . . . . . 11
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 1) |
8 | 6, 7 | frec2uzf1od 10362 |
. . . . . . . . . 10
⊢ (1 ∈
ℤ → 𝐺:ω–1-1-onto→(ℤ≥‘1)) |
9 | 5, 8 | ax-mp 5 |
. . . . . . . . 9
⊢ 𝐺:ω–1-1-onto→(ℤ≥‘1) |
10 | | nnuz 9522 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
11 | | f1oeq3 5433 |
. . . . . . . . . 10
⊢ (ℕ
= (ℤ≥‘1) → (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ≥‘1))) |
12 | 10, 11 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ≥‘1)) |
13 | 9, 12 | mpbir 145 |
. . . . . . . 8
⊢ 𝐺:ω–1-1-onto→ℕ |
14 | | f1ocnv 5455 |
. . . . . . . 8
⊢ (𝐺:ω–1-1-onto→ℕ → ◡𝐺:ℕ–1-1-onto→ω) |
15 | 13, 14 | ax-mp 5 |
. . . . . . 7
⊢ ◡𝐺:ℕ–1-1-onto→ω |
16 | | dff1o5 5451 |
. . . . . . 7
⊢ (◡𝐺:ℕ–1-1-onto→ω ↔ (◡𝐺:ℕ–1-1→ω ∧ ran ◡𝐺 = ω)) |
17 | 15, 16 | mpbi 144 |
. . . . . 6
⊢ (◡𝐺:ℕ–1-1→ω ∧ ran ◡𝐺 = ω) |
18 | 17 | simpri 112 |
. . . . 5
⊢ ran ◡𝐺 = ω |
19 | 4, 18 | sseqtri 3181 |
. . . 4
⊢ (◡𝐺 “ 𝐴) ⊆ ω |
20 | | eleq1 2233 |
. . . . . . . 8
⊢ (𝑧 = (𝐺‘𝑦) → (𝑧 ∈ 𝐴 ↔ (𝐺‘𝑦) ∈ 𝐴)) |
21 | 20 | dcbid 833 |
. . . . . . 7
⊢ (𝑧 = (𝐺‘𝑦) → (DECID 𝑧 ∈ 𝐴 ↔ DECID (𝐺‘𝑦) ∈ 𝐴)) |
22 | | simplr 525 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℕ ∧
∀𝑧 ∈ ℕ
DECID 𝑧
∈ 𝐴) ∧ 𝑦 ∈ ω) →
∀𝑧 ∈ ℕ
DECID 𝑧
∈ 𝐴) |
23 | | f1of 5442 |
. . . . . . . . 9
⊢ (𝐺:ω–1-1-onto→ℕ → 𝐺:ω⟶ℕ) |
24 | 13, 23 | mp1i 10 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℕ ∧
∀𝑧 ∈ ℕ
DECID 𝑧
∈ 𝐴) ∧ 𝑦 ∈ ω) → 𝐺:ω⟶ℕ) |
25 | | simpr 109 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℕ ∧
∀𝑧 ∈ ℕ
DECID 𝑧
∈ 𝐴) ∧ 𝑦 ∈ ω) → 𝑦 ∈
ω) |
26 | 24, 25 | ffvelrnd 5632 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℕ ∧
∀𝑧 ∈ ℕ
DECID 𝑧
∈ 𝐴) ∧ 𝑦 ∈ ω) → (𝐺‘𝑦) ∈ ℕ) |
27 | 21, 22, 26 | rspcdva 2839 |
. . . . . 6
⊢ (((𝐴 ⊆ ℕ ∧
∀𝑧 ∈ ℕ
DECID 𝑧
∈ 𝐴) ∧ 𝑦 ∈ ω) →
DECID (𝐺‘𝑦) ∈ 𝐴) |
28 | | f1of1 5441 |
. . . . . . . . . 10
⊢ (◡𝐺:ℕ–1-1-onto→ω → ◡𝐺:ℕ–1-1→ω) |
29 | 15, 28 | ax-mp 5 |
. . . . . . . . 9
⊢ ◡𝐺:ℕ–1-1→ω |
30 | | simpll 524 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℕ ∧
∀𝑧 ∈ ℕ
DECID 𝑧
∈ 𝐴) ∧ 𝑦 ∈ ω) → 𝐴 ⊆
ℕ) |
31 | | f1elima 5752 |
. . . . . . . . 9
⊢ ((◡𝐺:ℕ–1-1→ω ∧ (𝐺‘𝑦) ∈ ℕ ∧ 𝐴 ⊆ ℕ) → ((◡𝐺‘(𝐺‘𝑦)) ∈ (◡𝐺 “ 𝐴) ↔ (𝐺‘𝑦) ∈ 𝐴)) |
32 | 29, 26, 30, 31 | mp3an2i 1337 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℕ ∧
∀𝑧 ∈ ℕ
DECID 𝑧
∈ 𝐴) ∧ 𝑦 ∈ ω) → ((◡𝐺‘(𝐺‘𝑦)) ∈ (◡𝐺 “ 𝐴) ↔ (𝐺‘𝑦) ∈ 𝐴)) |
33 | | f1ocnvfv1 5756 |
. . . . . . . . . . 11
⊢ ((𝐺:ω–1-1-onto→ℕ ∧ 𝑦 ∈ ω) → (◡𝐺‘(𝐺‘𝑦)) = 𝑦) |
34 | 13, 33 | mpan 422 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ω → (◡𝐺‘(𝐺‘𝑦)) = 𝑦) |
35 | 34 | adantl 275 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℕ ∧
∀𝑧 ∈ ℕ
DECID 𝑧
∈ 𝐴) ∧ 𝑦 ∈ ω) → (◡𝐺‘(𝐺‘𝑦)) = 𝑦) |
36 | 35 | eleq1d 2239 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℕ ∧
∀𝑧 ∈ ℕ
DECID 𝑧
∈ 𝐴) ∧ 𝑦 ∈ ω) → ((◡𝐺‘(𝐺‘𝑦)) ∈ (◡𝐺 “ 𝐴) ↔ 𝑦 ∈ (◡𝐺 “ 𝐴))) |
37 | 32, 36 | bitr3d 189 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℕ ∧
∀𝑧 ∈ ℕ
DECID 𝑧
∈ 𝐴) ∧ 𝑦 ∈ ω) → ((𝐺‘𝑦) ∈ 𝐴 ↔ 𝑦 ∈ (◡𝐺 “ 𝐴))) |
38 | 37 | dcbid 833 |
. . . . . 6
⊢ (((𝐴 ⊆ ℕ ∧
∀𝑧 ∈ ℕ
DECID 𝑧
∈ 𝐴) ∧ 𝑦 ∈ ω) →
(DECID (𝐺‘𝑦) ∈ 𝐴 ↔ DECID 𝑦 ∈ (◡𝐺 “ 𝐴))) |
39 | 27, 38 | mpbid 146 |
. . . . 5
⊢ (((𝐴 ⊆ ℕ ∧
∀𝑧 ∈ ℕ
DECID 𝑧
∈ 𝐴) ∧ 𝑦 ∈ ω) →
DECID 𝑦
∈ (◡𝐺 “ 𝐴)) |
40 | 39 | ralrimiva 2543 |
. . . 4
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑧 ∈ ℕ
DECID 𝑧
∈ 𝐴) →
∀𝑦 ∈ ω
DECID 𝑦
∈ (◡𝐺 “ 𝐴)) |
41 | | ssomct 12400 |
. . . 4
⊢ (((◡𝐺 “ 𝐴) ⊆ ω ∧ ∀𝑦 ∈ ω
DECID 𝑦
∈ (◡𝐺 “ 𝐴)) → ∃𝑔 𝑔:ω–onto→((◡𝐺 “ 𝐴) ⊔ 1o)) |
42 | 19, 40, 41 | sylancr 412 |
. . 3
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑧 ∈ ℕ
DECID 𝑧
∈ 𝐴) →
∃𝑔 𝑔:ω–onto→((◡𝐺 “ 𝐴) ⊔ 1o)) |
43 | 3, 42 | sylan2b 285 |
. 2
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴) →
∃𝑔 𝑔:ω–onto→((◡𝐺 “ 𝐴) ⊔ 1o)) |
44 | | nnex 8884 |
. . . . . 6
⊢ ℕ
∈ V |
45 | 44 | ssex 4126 |
. . . . 5
⊢ (𝐴 ⊆ ℕ → 𝐴 ∈ V) |
46 | | f1ores 5457 |
. . . . . 6
⊢ ((◡𝐺:ℕ–1-1→ω ∧ 𝐴 ⊆ ℕ) → (◡𝐺 ↾ 𝐴):𝐴–1-1-onto→(◡𝐺 “ 𝐴)) |
47 | 29, 46 | mpan 422 |
. . . . 5
⊢ (𝐴 ⊆ ℕ → (◡𝐺 ↾ 𝐴):𝐴–1-1-onto→(◡𝐺 “ 𝐴)) |
48 | | f1oeng 6735 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ (◡𝐺 ↾ 𝐴):𝐴–1-1-onto→(◡𝐺 “ 𝐴)) → 𝐴 ≈ (◡𝐺 “ 𝐴)) |
49 | 45, 47, 48 | syl2anc 409 |
. . . 4
⊢ (𝐴 ⊆ ℕ → 𝐴 ≈ (◡𝐺 “ 𝐴)) |
50 | | enct 12388 |
. . . 4
⊢ (𝐴 ≈ (◡𝐺 “ 𝐴) → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→((◡𝐺 “ 𝐴) ⊔ 1o))) |
51 | 49, 50 | syl 14 |
. . 3
⊢ (𝐴 ⊆ ℕ →
(∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→((◡𝐺 “ 𝐴) ⊔ 1o))) |
52 | 51 | adantr 274 |
. 2
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴) →
(∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→((◡𝐺 “ 𝐴) ⊔ 1o))) |
53 | 43, 52 | mpbird 166 |
1
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴) →
∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)) |