ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnnctlemct GIF version

Theorem ssnnctlemct 12430
Description: Lemma for ssnnct 12431. The result. (Contributed by Jim Kingdon, 29-Sep-2024.)
Hypothesis
Ref Expression
ssnnctlem.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 1)
Assertion
Ref Expression
ssnnctlemct ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
Distinct variable groups:   𝐴,𝑓   𝑥,𝐴   𝑓,𝐺
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem ssnnctlemct
Dummy variables 𝑔 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2240 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
21dcbid 838 . . . 4 (𝑥 = 𝑧 → (DECID 𝑥𝐴DECID 𝑧𝐴))
32cbvralv 2703 . . 3 (∀𝑥 ∈ ℕ DECID 𝑥𝐴 ↔ ∀𝑧 ∈ ℕ DECID 𝑧𝐴)
4 imassrn 4977 . . . . 5 (𝐺𝐴) ⊆ ran 𝐺
5 1z 9268 . . . . . . . . . 10 1 ∈ ℤ
6 id 19 . . . . . . . . . . 11 (1 ∈ ℤ → 1 ∈ ℤ)
7 ssnnctlem.g . . . . . . . . . . 11 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 1)
86, 7frec2uzf1od 10392 . . . . . . . . . 10 (1 ∈ ℤ → 𝐺:ω–1-1-onto→(ℤ‘1))
95, 8ax-mp 5 . . . . . . . . 9 𝐺:ω–1-1-onto→(ℤ‘1)
10 nnuz 9552 . . . . . . . . . 10 ℕ = (ℤ‘1)
11 f1oeq3 5447 . . . . . . . . . 10 (ℕ = (ℤ‘1) → (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1)))
1210, 11ax-mp 5 . . . . . . . . 9 (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1))
139, 12mpbir 146 . . . . . . . 8 𝐺:ω–1-1-onto→ℕ
14 f1ocnv 5470 . . . . . . . 8 (𝐺:ω–1-1-onto→ℕ → 𝐺:ℕ–1-1-onto→ω)
1513, 14ax-mp 5 . . . . . . 7 𝐺:ℕ–1-1-onto→ω
16 dff1o5 5466 . . . . . . 7 (𝐺:ℕ–1-1-onto→ω ↔ (𝐺:ℕ–1-1→ω ∧ ran 𝐺 = ω))
1715, 16mpbi 145 . . . . . 6 (𝐺:ℕ–1-1→ω ∧ ran 𝐺 = ω)
1817simpri 113 . . . . 5 ran 𝐺 = ω
194, 18sseqtri 3189 . . . 4 (𝐺𝐴) ⊆ ω
20 eleq1 2240 . . . . . . . 8 (𝑧 = (𝐺𝑦) → (𝑧𝐴 ↔ (𝐺𝑦) ∈ 𝐴))
2120dcbid 838 . . . . . . 7 (𝑧 = (𝐺𝑦) → (DECID 𝑧𝐴DECID (𝐺𝑦) ∈ 𝐴))
22 simplr 528 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ∀𝑧 ∈ ℕ DECID 𝑧𝐴)
23 f1of 5457 . . . . . . . . 9 (𝐺:ω–1-1-onto→ℕ → 𝐺:ω⟶ℕ)
2413, 23mp1i 10 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → 𝐺:ω⟶ℕ)
25 simpr 110 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → 𝑦 ∈ ω)
2624, 25ffvelcdmd 5648 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → (𝐺𝑦) ∈ ℕ)
2721, 22, 26rspcdva 2846 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → DECID (𝐺𝑦) ∈ 𝐴)
28 f1of1 5456 . . . . . . . . . 10 (𝐺:ℕ–1-1-onto→ω → 𝐺:ℕ–1-1→ω)
2915, 28ax-mp 5 . . . . . . . . 9 𝐺:ℕ–1-1→ω
30 simpll 527 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → 𝐴 ⊆ ℕ)
31 f1elima 5768 . . . . . . . . 9 ((𝐺:ℕ–1-1→ω ∧ (𝐺𝑦) ∈ ℕ ∧ 𝐴 ⊆ ℕ) → ((𝐺‘(𝐺𝑦)) ∈ (𝐺𝐴) ↔ (𝐺𝑦) ∈ 𝐴))
3229, 26, 30, 31mp3an2i 1342 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ((𝐺‘(𝐺𝑦)) ∈ (𝐺𝐴) ↔ (𝐺𝑦) ∈ 𝐴))
33 f1ocnvfv1 5772 . . . . . . . . . . 11 ((𝐺:ω–1-1-onto→ℕ ∧ 𝑦 ∈ ω) → (𝐺‘(𝐺𝑦)) = 𝑦)
3413, 33mpan 424 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺‘(𝐺𝑦)) = 𝑦)
3534adantl 277 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → (𝐺‘(𝐺𝑦)) = 𝑦)
3635eleq1d 2246 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ((𝐺‘(𝐺𝑦)) ∈ (𝐺𝐴) ↔ 𝑦 ∈ (𝐺𝐴)))
3732, 36bitr3d 190 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ((𝐺𝑦) ∈ 𝐴𝑦 ∈ (𝐺𝐴)))
3837dcbid 838 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → (DECID (𝐺𝑦) ∈ 𝐴DECID 𝑦 ∈ (𝐺𝐴)))
3927, 38mpbid 147 . . . . 5 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → DECID 𝑦 ∈ (𝐺𝐴))
4039ralrimiva 2550 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) → ∀𝑦 ∈ ω DECID 𝑦 ∈ (𝐺𝐴))
41 ssomct 12429 . . . 4 (((𝐺𝐴) ⊆ ω ∧ ∀𝑦 ∈ ω DECID 𝑦 ∈ (𝐺𝐴)) → ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o))
4219, 40, 41sylancr 414 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) → ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o))
433, 42sylan2b 287 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o))
44 nnex 8914 . . . . . 6 ℕ ∈ V
4544ssex 4137 . . . . 5 (𝐴 ⊆ ℕ → 𝐴 ∈ V)
46 f1ores 5472 . . . . . 6 ((𝐺:ℕ–1-1→ω ∧ 𝐴 ⊆ ℕ) → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
4729, 46mpan 424 . . . . 5 (𝐴 ⊆ ℕ → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
48 f1oeng 6751 . . . . 5 ((𝐴 ∈ V ∧ (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴)) → 𝐴 ≈ (𝐺𝐴))
4945, 47, 48syl2anc 411 . . . 4 (𝐴 ⊆ ℕ → 𝐴 ≈ (𝐺𝐴))
50 enct 12417 . . . 4 (𝐴 ≈ (𝐺𝐴) → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o)))
5149, 50syl 14 . . 3 (𝐴 ⊆ ℕ → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o)))
5251adantr 276 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o)))
5343, 52mpbird 167 1 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wex 1492  wcel 2148  wral 2455  Vcvv 2737  wss 3129   class class class wbr 4000  cmpt 4061  ωcom 4586  ccnv 4622  ran crn 4624  cres 4625  cima 4626  wf 5208  1-1wf1 5209  ontowfo 5210  1-1-ontowf1o 5211  cfv 5212  (class class class)co 5869  freccfrec 6385  1oc1o 6404  cen 6732  cdju 7030  1c1 7803   + caddc 7805  cn 8908  cz 9242  cuz 9517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-1o 6411  df-er 6529  df-en 6735  df-dju 7031  df-inl 7040  df-inr 7041  df-case 7077  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518
This theorem is referenced by:  ssnnct  12431
  Copyright terms: Public domain W3C validator