ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnnctlemct GIF version

Theorem ssnnctlemct 12663
Description: Lemma for ssnnct 12664. The result. (Contributed by Jim Kingdon, 29-Sep-2024.)
Hypothesis
Ref Expression
ssnnctlem.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 1)
Assertion
Ref Expression
ssnnctlemct ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
Distinct variable groups:   𝐴,𝑓   𝑥,𝐴   𝑓,𝐺
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem ssnnctlemct
Dummy variables 𝑔 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2259 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
21dcbid 839 . . . 4 (𝑥 = 𝑧 → (DECID 𝑥𝐴DECID 𝑧𝐴))
32cbvralv 2729 . . 3 (∀𝑥 ∈ ℕ DECID 𝑥𝐴 ↔ ∀𝑧 ∈ ℕ DECID 𝑧𝐴)
4 imassrn 5020 . . . . 5 (𝐺𝐴) ⊆ ran 𝐺
5 1z 9352 . . . . . . . . . 10 1 ∈ ℤ
6 id 19 . . . . . . . . . . 11 (1 ∈ ℤ → 1 ∈ ℤ)
7 ssnnctlem.g . . . . . . . . . . 11 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 1)
86, 7frec2uzf1od 10498 . . . . . . . . . 10 (1 ∈ ℤ → 𝐺:ω–1-1-onto→(ℤ‘1))
95, 8ax-mp 5 . . . . . . . . 9 𝐺:ω–1-1-onto→(ℤ‘1)
10 nnuz 9637 . . . . . . . . . 10 ℕ = (ℤ‘1)
11 f1oeq3 5494 . . . . . . . . . 10 (ℕ = (ℤ‘1) → (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1)))
1210, 11ax-mp 5 . . . . . . . . 9 (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1))
139, 12mpbir 146 . . . . . . . 8 𝐺:ω–1-1-onto→ℕ
14 f1ocnv 5517 . . . . . . . 8 (𝐺:ω–1-1-onto→ℕ → 𝐺:ℕ–1-1-onto→ω)
1513, 14ax-mp 5 . . . . . . 7 𝐺:ℕ–1-1-onto→ω
16 dff1o5 5513 . . . . . . 7 (𝐺:ℕ–1-1-onto→ω ↔ (𝐺:ℕ–1-1→ω ∧ ran 𝐺 = ω))
1715, 16mpbi 145 . . . . . 6 (𝐺:ℕ–1-1→ω ∧ ran 𝐺 = ω)
1817simpri 113 . . . . 5 ran 𝐺 = ω
194, 18sseqtri 3217 . . . 4 (𝐺𝐴) ⊆ ω
20 eleq1 2259 . . . . . . . 8 (𝑧 = (𝐺𝑦) → (𝑧𝐴 ↔ (𝐺𝑦) ∈ 𝐴))
2120dcbid 839 . . . . . . 7 (𝑧 = (𝐺𝑦) → (DECID 𝑧𝐴DECID (𝐺𝑦) ∈ 𝐴))
22 simplr 528 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ∀𝑧 ∈ ℕ DECID 𝑧𝐴)
23 f1of 5504 . . . . . . . . 9 (𝐺:ω–1-1-onto→ℕ → 𝐺:ω⟶ℕ)
2413, 23mp1i 10 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → 𝐺:ω⟶ℕ)
25 simpr 110 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → 𝑦 ∈ ω)
2624, 25ffvelcdmd 5698 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → (𝐺𝑦) ∈ ℕ)
2721, 22, 26rspcdva 2873 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → DECID (𝐺𝑦) ∈ 𝐴)
28 f1of1 5503 . . . . . . . . . 10 (𝐺:ℕ–1-1-onto→ω → 𝐺:ℕ–1-1→ω)
2915, 28ax-mp 5 . . . . . . . . 9 𝐺:ℕ–1-1→ω
30 simpll 527 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → 𝐴 ⊆ ℕ)
31 f1elima 5820 . . . . . . . . 9 ((𝐺:ℕ–1-1→ω ∧ (𝐺𝑦) ∈ ℕ ∧ 𝐴 ⊆ ℕ) → ((𝐺‘(𝐺𝑦)) ∈ (𝐺𝐴) ↔ (𝐺𝑦) ∈ 𝐴))
3229, 26, 30, 31mp3an2i 1353 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ((𝐺‘(𝐺𝑦)) ∈ (𝐺𝐴) ↔ (𝐺𝑦) ∈ 𝐴))
33 f1ocnvfv1 5824 . . . . . . . . . . 11 ((𝐺:ω–1-1-onto→ℕ ∧ 𝑦 ∈ ω) → (𝐺‘(𝐺𝑦)) = 𝑦)
3413, 33mpan 424 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺‘(𝐺𝑦)) = 𝑦)
3534adantl 277 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → (𝐺‘(𝐺𝑦)) = 𝑦)
3635eleq1d 2265 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ((𝐺‘(𝐺𝑦)) ∈ (𝐺𝐴) ↔ 𝑦 ∈ (𝐺𝐴)))
3732, 36bitr3d 190 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ((𝐺𝑦) ∈ 𝐴𝑦 ∈ (𝐺𝐴)))
3837dcbid 839 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → (DECID (𝐺𝑦) ∈ 𝐴DECID 𝑦 ∈ (𝐺𝐴)))
3927, 38mpbid 147 . . . . 5 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → DECID 𝑦 ∈ (𝐺𝐴))
4039ralrimiva 2570 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) → ∀𝑦 ∈ ω DECID 𝑦 ∈ (𝐺𝐴))
41 ssomct 12662 . . . 4 (((𝐺𝐴) ⊆ ω ∧ ∀𝑦 ∈ ω DECID 𝑦 ∈ (𝐺𝐴)) → ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o))
4219, 40, 41sylancr 414 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) → ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o))
433, 42sylan2b 287 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o))
44 nnex 8996 . . . . . 6 ℕ ∈ V
4544ssex 4170 . . . . 5 (𝐴 ⊆ ℕ → 𝐴 ∈ V)
46 f1ores 5519 . . . . . 6 ((𝐺:ℕ–1-1→ω ∧ 𝐴 ⊆ ℕ) → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
4729, 46mpan 424 . . . . 5 (𝐴 ⊆ ℕ → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
48 f1oeng 6816 . . . . 5 ((𝐴 ∈ V ∧ (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴)) → 𝐴 ≈ (𝐺𝐴))
4945, 47, 48syl2anc 411 . . . 4 (𝐴 ⊆ ℕ → 𝐴 ≈ (𝐺𝐴))
50 enct 12650 . . . 4 (𝐴 ≈ (𝐺𝐴) → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o)))
5149, 50syl 14 . . 3 (𝐴 ⊆ ℕ → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o)))
5251adantr 276 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o)))
5343, 52mpbird 167 1 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wex 1506  wcel 2167  wral 2475  Vcvv 2763  wss 3157   class class class wbr 4033  cmpt 4094  ωcom 4626  ccnv 4662  ran crn 4664  cres 4665  cima 4666  wf 5254  1-1wf1 5255  ontowfo 5256  1-1-ontowf1o 5257  cfv 5258  (class class class)co 5922  freccfrec 6448  1oc1o 6467  cen 6797  cdju 7103  1c1 7880   + caddc 7882  cn 8990  cz 9326  cuz 9601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-dju 7104  df-inl 7113  df-inr 7114  df-case 7150  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602
This theorem is referenced by:  ssnnct  12664
  Copyright terms: Public domain W3C validator