ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnnctlemct GIF version

Theorem ssnnctlemct 12736
Description: Lemma for ssnnct 12737. The result. (Contributed by Jim Kingdon, 29-Sep-2024.)
Hypothesis
Ref Expression
ssnnctlem.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 1)
Assertion
Ref Expression
ssnnctlemct ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
Distinct variable groups:   𝐴,𝑓   𝑥,𝐴   𝑓,𝐺
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem ssnnctlemct
Dummy variables 𝑔 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2267 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
21dcbid 839 . . . 4 (𝑥 = 𝑧 → (DECID 𝑥𝐴DECID 𝑧𝐴))
32cbvralv 2737 . . 3 (∀𝑥 ∈ ℕ DECID 𝑥𝐴 ↔ ∀𝑧 ∈ ℕ DECID 𝑧𝐴)
4 imassrn 5030 . . . . 5 (𝐺𝐴) ⊆ ran 𝐺
5 1z 9380 . . . . . . . . . 10 1 ∈ ℤ
6 id 19 . . . . . . . . . . 11 (1 ∈ ℤ → 1 ∈ ℤ)
7 ssnnctlem.g . . . . . . . . . . 11 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 1)
86, 7frec2uzf1od 10532 . . . . . . . . . 10 (1 ∈ ℤ → 𝐺:ω–1-1-onto→(ℤ‘1))
95, 8ax-mp 5 . . . . . . . . 9 𝐺:ω–1-1-onto→(ℤ‘1)
10 nnuz 9666 . . . . . . . . . 10 ℕ = (ℤ‘1)
11 f1oeq3 5506 . . . . . . . . . 10 (ℕ = (ℤ‘1) → (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1)))
1210, 11ax-mp 5 . . . . . . . . 9 (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1))
139, 12mpbir 146 . . . . . . . 8 𝐺:ω–1-1-onto→ℕ
14 f1ocnv 5529 . . . . . . . 8 (𝐺:ω–1-1-onto→ℕ → 𝐺:ℕ–1-1-onto→ω)
1513, 14ax-mp 5 . . . . . . 7 𝐺:ℕ–1-1-onto→ω
16 dff1o5 5525 . . . . . . 7 (𝐺:ℕ–1-1-onto→ω ↔ (𝐺:ℕ–1-1→ω ∧ ran 𝐺 = ω))
1715, 16mpbi 145 . . . . . 6 (𝐺:ℕ–1-1→ω ∧ ran 𝐺 = ω)
1817simpri 113 . . . . 5 ran 𝐺 = ω
194, 18sseqtri 3226 . . . 4 (𝐺𝐴) ⊆ ω
20 eleq1 2267 . . . . . . . 8 (𝑧 = (𝐺𝑦) → (𝑧𝐴 ↔ (𝐺𝑦) ∈ 𝐴))
2120dcbid 839 . . . . . . 7 (𝑧 = (𝐺𝑦) → (DECID 𝑧𝐴DECID (𝐺𝑦) ∈ 𝐴))
22 simplr 528 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ∀𝑧 ∈ ℕ DECID 𝑧𝐴)
23 f1of 5516 . . . . . . . . 9 (𝐺:ω–1-1-onto→ℕ → 𝐺:ω⟶ℕ)
2413, 23mp1i 10 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → 𝐺:ω⟶ℕ)
25 simpr 110 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → 𝑦 ∈ ω)
2624, 25ffvelcdmd 5710 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → (𝐺𝑦) ∈ ℕ)
2721, 22, 26rspcdva 2881 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → DECID (𝐺𝑦) ∈ 𝐴)
28 f1of1 5515 . . . . . . . . . 10 (𝐺:ℕ–1-1-onto→ω → 𝐺:ℕ–1-1→ω)
2915, 28ax-mp 5 . . . . . . . . 9 𝐺:ℕ–1-1→ω
30 simpll 527 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → 𝐴 ⊆ ℕ)
31 f1elima 5832 . . . . . . . . 9 ((𝐺:ℕ–1-1→ω ∧ (𝐺𝑦) ∈ ℕ ∧ 𝐴 ⊆ ℕ) → ((𝐺‘(𝐺𝑦)) ∈ (𝐺𝐴) ↔ (𝐺𝑦) ∈ 𝐴))
3229, 26, 30, 31mp3an2i 1354 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ((𝐺‘(𝐺𝑦)) ∈ (𝐺𝐴) ↔ (𝐺𝑦) ∈ 𝐴))
33 f1ocnvfv1 5836 . . . . . . . . . . 11 ((𝐺:ω–1-1-onto→ℕ ∧ 𝑦 ∈ ω) → (𝐺‘(𝐺𝑦)) = 𝑦)
3413, 33mpan 424 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺‘(𝐺𝑦)) = 𝑦)
3534adantl 277 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → (𝐺‘(𝐺𝑦)) = 𝑦)
3635eleq1d 2273 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ((𝐺‘(𝐺𝑦)) ∈ (𝐺𝐴) ↔ 𝑦 ∈ (𝐺𝐴)))
3732, 36bitr3d 190 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ((𝐺𝑦) ∈ 𝐴𝑦 ∈ (𝐺𝐴)))
3837dcbid 839 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → (DECID (𝐺𝑦) ∈ 𝐴DECID 𝑦 ∈ (𝐺𝐴)))
3927, 38mpbid 147 . . . . 5 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → DECID 𝑦 ∈ (𝐺𝐴))
4039ralrimiva 2578 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) → ∀𝑦 ∈ ω DECID 𝑦 ∈ (𝐺𝐴))
41 ssomct 12735 . . . 4 (((𝐺𝐴) ⊆ ω ∧ ∀𝑦 ∈ ω DECID 𝑦 ∈ (𝐺𝐴)) → ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o))
4219, 40, 41sylancr 414 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) → ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o))
433, 42sylan2b 287 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o))
44 nnex 9024 . . . . . 6 ℕ ∈ V
4544ssex 4180 . . . . 5 (𝐴 ⊆ ℕ → 𝐴 ∈ V)
46 f1ores 5531 . . . . . 6 ((𝐺:ℕ–1-1→ω ∧ 𝐴 ⊆ ℕ) → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
4729, 46mpan 424 . . . . 5 (𝐴 ⊆ ℕ → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
48 f1oeng 6834 . . . . 5 ((𝐴 ∈ V ∧ (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴)) → 𝐴 ≈ (𝐺𝐴))
4945, 47, 48syl2anc 411 . . . 4 (𝐴 ⊆ ℕ → 𝐴 ≈ (𝐺𝐴))
50 enct 12723 . . . 4 (𝐴 ≈ (𝐺𝐴) → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o)))
5149, 50syl 14 . . 3 (𝐴 ⊆ ℕ → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o)))
5251adantr 276 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o)))
5343, 52mpbird 167 1 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1372  wex 1514  wcel 2175  wral 2483  Vcvv 2771  wss 3165   class class class wbr 4043  cmpt 4104  ωcom 4636  ccnv 4672  ran crn 4674  cres 4675  cima 4676  wf 5264  1-1wf1 5265  ontowfo 5266  1-1-ontowf1o 5267  cfv 5268  (class class class)co 5934  freccfrec 6466  1oc1o 6485  cen 6815  cdju 7121  1c1 7908   + caddc 7910  cn 9018  cz 9354  cuz 9630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-1o 6492  df-er 6610  df-en 6818  df-dju 7122  df-inl 7131  df-inr 7132  df-case 7168  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631
This theorem is referenced by:  ssnnct  12737
  Copyright terms: Public domain W3C validator