ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnnctlemct GIF version

Theorem ssnnctlemct 12375
Description: Lemma for ssnnct 12376. The result. (Contributed by Jim Kingdon, 29-Sep-2024.)
Hypothesis
Ref Expression
ssnnctlem.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 1)
Assertion
Ref Expression
ssnnctlemct ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
Distinct variable groups:   𝐴,𝑓   𝑥,𝐴   𝑓,𝐺
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem ssnnctlemct
Dummy variables 𝑔 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2228 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
21dcbid 828 . . . 4 (𝑥 = 𝑧 → (DECID 𝑥𝐴DECID 𝑧𝐴))
32cbvralv 2691 . . 3 (∀𝑥 ∈ ℕ DECID 𝑥𝐴 ↔ ∀𝑧 ∈ ℕ DECID 𝑧𝐴)
4 imassrn 4956 . . . . 5 (𝐺𝐴) ⊆ ran 𝐺
5 1z 9213 . . . . . . . . . 10 1 ∈ ℤ
6 id 19 . . . . . . . . . . 11 (1 ∈ ℤ → 1 ∈ ℤ)
7 ssnnctlem.g . . . . . . . . . . 11 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 1)
86, 7frec2uzf1od 10337 . . . . . . . . . 10 (1 ∈ ℤ → 𝐺:ω–1-1-onto→(ℤ‘1))
95, 8ax-mp 5 . . . . . . . . 9 𝐺:ω–1-1-onto→(ℤ‘1)
10 nnuz 9497 . . . . . . . . . 10 ℕ = (ℤ‘1)
11 f1oeq3 5422 . . . . . . . . . 10 (ℕ = (ℤ‘1) → (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1)))
1210, 11ax-mp 5 . . . . . . . . 9 (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1))
139, 12mpbir 145 . . . . . . . 8 𝐺:ω–1-1-onto→ℕ
14 f1ocnv 5444 . . . . . . . 8 (𝐺:ω–1-1-onto→ℕ → 𝐺:ℕ–1-1-onto→ω)
1513, 14ax-mp 5 . . . . . . 7 𝐺:ℕ–1-1-onto→ω
16 dff1o5 5440 . . . . . . 7 (𝐺:ℕ–1-1-onto→ω ↔ (𝐺:ℕ–1-1→ω ∧ ran 𝐺 = ω))
1715, 16mpbi 144 . . . . . 6 (𝐺:ℕ–1-1→ω ∧ ran 𝐺 = ω)
1817simpri 112 . . . . 5 ran 𝐺 = ω
194, 18sseqtri 3175 . . . 4 (𝐺𝐴) ⊆ ω
20 eleq1 2228 . . . . . . . 8 (𝑧 = (𝐺𝑦) → (𝑧𝐴 ↔ (𝐺𝑦) ∈ 𝐴))
2120dcbid 828 . . . . . . 7 (𝑧 = (𝐺𝑦) → (DECID 𝑧𝐴DECID (𝐺𝑦) ∈ 𝐴))
22 simplr 520 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ∀𝑧 ∈ ℕ DECID 𝑧𝐴)
23 f1of 5431 . . . . . . . . 9 (𝐺:ω–1-1-onto→ℕ → 𝐺:ω⟶ℕ)
2413, 23mp1i 10 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → 𝐺:ω⟶ℕ)
25 simpr 109 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → 𝑦 ∈ ω)
2624, 25ffvelrnd 5620 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → (𝐺𝑦) ∈ ℕ)
2721, 22, 26rspcdva 2834 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → DECID (𝐺𝑦) ∈ 𝐴)
28 f1of1 5430 . . . . . . . . . 10 (𝐺:ℕ–1-1-onto→ω → 𝐺:ℕ–1-1→ω)
2915, 28ax-mp 5 . . . . . . . . 9 𝐺:ℕ–1-1→ω
30 simpll 519 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → 𝐴 ⊆ ℕ)
31 f1elima 5740 . . . . . . . . 9 ((𝐺:ℕ–1-1→ω ∧ (𝐺𝑦) ∈ ℕ ∧ 𝐴 ⊆ ℕ) → ((𝐺‘(𝐺𝑦)) ∈ (𝐺𝐴) ↔ (𝐺𝑦) ∈ 𝐴))
3229, 26, 30, 31mp3an2i 1332 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ((𝐺‘(𝐺𝑦)) ∈ (𝐺𝐴) ↔ (𝐺𝑦) ∈ 𝐴))
33 f1ocnvfv1 5744 . . . . . . . . . . 11 ((𝐺:ω–1-1-onto→ℕ ∧ 𝑦 ∈ ω) → (𝐺‘(𝐺𝑦)) = 𝑦)
3413, 33mpan 421 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺‘(𝐺𝑦)) = 𝑦)
3534adantl 275 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → (𝐺‘(𝐺𝑦)) = 𝑦)
3635eleq1d 2234 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ((𝐺‘(𝐺𝑦)) ∈ (𝐺𝐴) ↔ 𝑦 ∈ (𝐺𝐴)))
3732, 36bitr3d 189 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → ((𝐺𝑦) ∈ 𝐴𝑦 ∈ (𝐺𝐴)))
3837dcbid 828 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → (DECID (𝐺𝑦) ∈ 𝐴DECID 𝑦 ∈ (𝐺𝐴)))
3927, 38mpbid 146 . . . . 5 (((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) ∧ 𝑦 ∈ ω) → DECID 𝑦 ∈ (𝐺𝐴))
4039ralrimiva 2538 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) → ∀𝑦 ∈ ω DECID 𝑦 ∈ (𝐺𝐴))
41 ssomct 12374 . . . 4 (((𝐺𝐴) ⊆ ω ∧ ∀𝑦 ∈ ω DECID 𝑦 ∈ (𝐺𝐴)) → ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o))
4219, 40, 41sylancr 411 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑧 ∈ ℕ DECID 𝑧𝐴) → ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o))
433, 42sylan2b 285 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o))
44 nnex 8859 . . . . . 6 ℕ ∈ V
4544ssex 4118 . . . . 5 (𝐴 ⊆ ℕ → 𝐴 ∈ V)
46 f1ores 5446 . . . . . 6 ((𝐺:ℕ–1-1→ω ∧ 𝐴 ⊆ ℕ) → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
4729, 46mpan 421 . . . . 5 (𝐴 ⊆ ℕ → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
48 f1oeng 6719 . . . . 5 ((𝐴 ∈ V ∧ (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴)) → 𝐴 ≈ (𝐺𝐴))
4945, 47, 48syl2anc 409 . . . 4 (𝐴 ⊆ ℕ → 𝐴 ≈ (𝐺𝐴))
50 enct 12362 . . . 4 (𝐴 ≈ (𝐺𝐴) → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o)))
5149, 50syl 14 . . 3 (𝐴 ⊆ ℕ → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o)))
5251adantr 274 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→((𝐺𝐴) ⊔ 1o)))
5343, 52mpbird 166 1 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 824   = wceq 1343  wex 1480  wcel 2136  wral 2443  Vcvv 2725  wss 3115   class class class wbr 3981  cmpt 4042  ωcom 4566  ccnv 4602  ran crn 4604  cres 4605  cima 4606  wf 5183  1-1wf1 5184  ontowfo 5185  1-1-ontowf1o 5186  cfv 5187  (class class class)co 5841  freccfrec 6354  1oc1o 6373  cen 6700  cdju 6998  1c1 7750   + caddc 7752  cn 8853  cz 9187  cuz 9462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-addass 7851  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-ltadd 7865
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-1o 6380  df-er 6497  df-en 6703  df-dju 6999  df-inl 7008  df-inr 7009  df-case 7045  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-inn 8854  df-n0 9111  df-z 9188  df-uz 9463
This theorem is referenced by:  ssnnct  12376
  Copyright terms: Public domain W3C validator