![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omtrans2 | GIF version |
Description: The set ω is transitive. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-omtrans2 | ⊢ Tr ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr3 3938 | . 2 ⊢ (Tr ω ↔ ∀𝑥 ∈ ω 𝑥 ⊆ ω) | |
2 | bj-omtrans 11734 | . 2 ⊢ (𝑥 ∈ ω → 𝑥 ⊆ ω) | |
3 | 1, 2 | mprgbir 2433 | 1 ⊢ Tr ω |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 2999 Tr wtr 3934 ωcom 4403 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-nul 3963 ax-pr 4034 ax-un 4258 ax-bd0 11587 ax-bdor 11590 ax-bdal 11592 ax-bdex 11593 ax-bdeq 11594 ax-bdel 11595 ax-bdsb 11596 ax-bdsep 11658 ax-infvn 11719 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-rab 2368 df-v 2621 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-sn 3450 df-pr 3451 df-uni 3652 df-int 3687 df-tr 3935 df-suc 4196 df-iom 4404 df-bdc 11615 df-bj-ind 11705 |
This theorem is referenced by: bj-omord 11738 |
Copyright terms: Public domain | W3C validator |