ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscld GIF version

Theorem iscld 14282
Description: The predicate "the class 𝑆 is a closed set". (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
iscld (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))

Proof of Theorem iscld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5 𝑋 = 𝐽
21cldval 14278 . . . 4 (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
32eleq2d 2263 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽}))
4 difeq2 3272 . . . . 5 (𝑥 = 𝑆 → (𝑋𝑥) = (𝑋𝑆))
54eleq1d 2262 . . . 4 (𝑥 = 𝑆 → ((𝑋𝑥) ∈ 𝐽 ↔ (𝑋𝑆) ∈ 𝐽))
65elrab 2917 . . 3 (𝑆 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽} ↔ (𝑆 ∈ 𝒫 𝑋 ∧ (𝑋𝑆) ∈ 𝐽))
73, 6bitrdi 196 . 2 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ∈ 𝒫 𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
81topopn 14187 . . . 4 (𝐽 ∈ Top → 𝑋𝐽)
9 elpw2g 4186 . . . 4 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
108, 9syl 14 . . 3 (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1110anbi1d 465 . 2 (𝐽 ∈ Top → ((𝑆 ∈ 𝒫 𝑋 ∧ (𝑋𝑆) ∈ 𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
127, 11bitrd 188 1 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  {crab 2476  cdif 3151  wss 3154  𝒫 cpw 3602   cuni 3836  cfv 5255  Topctop 14176  Clsdccld 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-top 14177  df-cld 14274
This theorem is referenced by:  iscld2  14283  cldss  14284  cldopn  14286  topcld  14288  discld  14315
  Copyright terms: Public domain W3C validator