Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iscld | GIF version |
Description: The predicate "the class 𝑆 is a closed set". (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
iscld | ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | cldval 12739 | . . . 4 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽}) |
3 | 2 | eleq2d 2236 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽})) |
4 | difeq2 3234 | . . . . 5 ⊢ (𝑥 = 𝑆 → (𝑋 ∖ 𝑥) = (𝑋 ∖ 𝑆)) | |
5 | 4 | eleq1d 2235 | . . . 4 ⊢ (𝑥 = 𝑆 → ((𝑋 ∖ 𝑥) ∈ 𝐽 ↔ (𝑋 ∖ 𝑆) ∈ 𝐽)) |
6 | 5 | elrab 2882 | . . 3 ⊢ (𝑆 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽} ↔ (𝑆 ∈ 𝒫 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽)) |
7 | 3, 6 | bitrdi 195 | . 2 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ∈ 𝒫 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
8 | 1 | topopn 12646 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
9 | elpw2g 4135 | . . . 4 ⊢ (𝑋 ∈ 𝐽 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
10 | 8, 9 | syl 14 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
11 | 10 | anbi1d 461 | . 2 ⊢ (𝐽 ∈ Top → ((𝑆 ∈ 𝒫 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
12 | 7, 11 | bitrd 187 | 1 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 {crab 2448 ∖ cdif 3113 ⊆ wss 3116 𝒫 cpw 3559 ∪ cuni 3789 ‘cfv 5188 Topctop 12635 Clsdccld 12732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-top 12636 df-cld 12735 |
This theorem is referenced by: iscld2 12744 cldss 12745 cldopn 12747 topcld 12749 discld 12776 |
Copyright terms: Public domain | W3C validator |