![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iscld | GIF version |
Description: The predicate "the class 𝑆 is a closed set". (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
iscld | ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | cldval 13684 | . . . 4 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽}) |
3 | 2 | eleq2d 2247 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽})) |
4 | difeq2 3249 | . . . . 5 ⊢ (𝑥 = 𝑆 → (𝑋 ∖ 𝑥) = (𝑋 ∖ 𝑆)) | |
5 | 4 | eleq1d 2246 | . . . 4 ⊢ (𝑥 = 𝑆 → ((𝑋 ∖ 𝑥) ∈ 𝐽 ↔ (𝑋 ∖ 𝑆) ∈ 𝐽)) |
6 | 5 | elrab 2895 | . . 3 ⊢ (𝑆 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽} ↔ (𝑆 ∈ 𝒫 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽)) |
7 | 3, 6 | bitrdi 196 | . 2 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ∈ 𝒫 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
8 | 1 | topopn 13593 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
9 | elpw2g 4158 | . . . 4 ⊢ (𝑋 ∈ 𝐽 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
10 | 8, 9 | syl 14 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
11 | 10 | anbi1d 465 | . 2 ⊢ (𝐽 ∈ Top → ((𝑆 ∈ 𝒫 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
12 | 7, 11 | bitrd 188 | 1 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {crab 2459 ∖ cdif 3128 ⊆ wss 3131 𝒫 cpw 3577 ∪ cuni 3811 ‘cfv 5218 Topctop 13582 Clsdccld 13677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-top 13583 df-cld 13680 |
This theorem is referenced by: iscld2 13689 cldss 13690 cldopn 13692 topcld 13694 discld 13721 |
Copyright terms: Public domain | W3C validator |