ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmss GIF version

Theorem dmss 4919
Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmss (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)

Proof of Theorem dmss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3218 . . . 4 (𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
21eximdv 1926 . . 3 (𝐴𝐵 → (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵))
3 vex 2802 . . . 4 𝑥 ∈ V
43eldm2 4918 . . 3 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
53eldm2 4918 . . 3 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵)
62, 4, 53imtr4g 205 . 2 (𝐴𝐵 → (𝑥 ∈ dom 𝐴𝑥 ∈ dom 𝐵))
76ssrdv 3230 1 (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1538  wcel 2200  wss 3197  cop 3669  dom cdm 4716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-dm 4726
This theorem is referenced by:  dmeq  4920  dmv  4936  rnss  4950  dmiin  4966  dmxpss2  5157  ssxpbm  5160  ssxp1  5161  cocnvres  5249  relrelss  5251  funssxp  5489  fvun1  5693  fndmdif  5733  fneqeql2  5737  tposss  6382  smores  6428  smores2  6430  tfrlemibfn  6464  tfrlemiubacc  6466  tfr1onlembfn  6480  tfr1onlemubacc  6482  tfr1onlemres  6485  tfrcllembfn  6493  tfrcllemubacc  6495  tfrcllemres  6498  frecuzrdgtcl  10621  frecuzrdgdomlem  10626  hashdmprop2dom  11053  ennnfonelemex  12971  strleund  13122  strleun  13123  imasaddfnlemg  13333  dvbssntrcntop  15343
  Copyright terms: Public domain W3C validator