Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmss | GIF version |
Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
dmss | ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3147 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
2 | 1 | eximdv 1878 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
3 | vex 2738 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm2 4818 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
5 | 3 | eldm2 4818 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
6 | 2, 4, 5 | 3imtr4g 205 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵)) |
7 | 6 | ssrdv 3159 | 1 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1490 ∈ wcel 2146 ⊆ wss 3127 〈cop 3592 dom cdm 4620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-dm 4630 |
This theorem is referenced by: dmeq 4820 dmv 4836 rnss 4850 dmiin 4866 dmxpss2 5053 ssxpbm 5056 ssxp1 5057 cocnvres 5145 relrelss 5147 funssxp 5377 fvun1 5574 fndmdif 5613 fneqeql2 5617 tposss 6237 smores 6283 smores2 6285 tfrlemibfn 6319 tfrlemiubacc 6321 tfr1onlembfn 6335 tfr1onlemubacc 6337 tfr1onlemres 6340 tfrcllembfn 6348 tfrcllemubacc 6350 tfrcllemres 6353 frecuzrdgtcl 10380 frecuzrdgdomlem 10385 ennnfonelemex 12380 strleund 12517 strleun 12518 dvbssntrcntop 13722 |
Copyright terms: Public domain | W3C validator |