| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmss | GIF version | ||
| Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmss | ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3218 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 2 | 1 | eximdv 1926 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 3 | vex 2802 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm2 4918 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 5 | 3 | eldm2 4918 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
| 6 | 2, 4, 5 | 3imtr4g 205 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵)) |
| 7 | 6 | ssrdv 3230 | 1 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1538 ∈ wcel 2200 ⊆ wss 3197 〈cop 3669 dom cdm 4716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-dm 4726 |
| This theorem is referenced by: dmeq 4920 dmv 4936 rnss 4950 dmiin 4966 dmxpss2 5157 ssxpbm 5160 ssxp1 5161 cocnvres 5249 relrelss 5251 funssxp 5489 fvun1 5693 fndmdif 5733 fneqeql2 5737 tposss 6382 smores 6428 smores2 6430 tfrlemibfn 6464 tfrlemiubacc 6466 tfr1onlembfn 6480 tfr1onlemubacc 6482 tfr1onlemres 6485 tfrcllembfn 6493 tfrcllemubacc 6495 tfrcllemres 6498 frecuzrdgtcl 10621 frecuzrdgdomlem 10626 hashdmprop2dom 11053 ennnfonelemex 12971 strleund 13122 strleun 13123 imasaddfnlemg 13333 dvbssntrcntop 15343 |
| Copyright terms: Public domain | W3C validator |