| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmss | GIF version | ||
| Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmss | ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3178 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 2 | 1 | eximdv 1894 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 3 | vex 2766 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm2 4865 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 5 | 3 | eldm2 4865 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
| 6 | 2, 4, 5 | 3imtr4g 205 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵)) |
| 7 | 6 | ssrdv 3190 | 1 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1506 ∈ wcel 2167 ⊆ wss 3157 〈cop 3626 dom cdm 4664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-dm 4674 |
| This theorem is referenced by: dmeq 4867 dmv 4883 rnss 4897 dmiin 4913 dmxpss2 5103 ssxpbm 5106 ssxp1 5107 cocnvres 5195 relrelss 5197 funssxp 5430 fvun1 5630 fndmdif 5670 fneqeql2 5674 tposss 6313 smores 6359 smores2 6361 tfrlemibfn 6395 tfrlemiubacc 6397 tfr1onlembfn 6411 tfr1onlemubacc 6413 tfr1onlemres 6416 tfrcllembfn 6424 tfrcllemubacc 6426 tfrcllemres 6429 frecuzrdgtcl 10521 frecuzrdgdomlem 10526 ennnfonelemex 12656 strleund 12806 strleun 12807 imasaddfnlemg 13016 dvbssntrcntop 15004 |
| Copyright terms: Public domain | W3C validator |