![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmss | GIF version |
Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
dmss | ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3151 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)) | |
2 | 1 | eximdv 1880 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
3 | vex 2742 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm2 4827 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) |
5 | 3 | eldm2 4827 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐵) |
6 | 2, 4, 5 | 3imtr4g 205 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵)) |
7 | 6 | ssrdv 3163 | 1 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1492 ∈ wcel 2148 ⊆ wss 3131 ⟨cop 3597 dom cdm 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-dm 4638 |
This theorem is referenced by: dmeq 4829 dmv 4845 rnss 4859 dmiin 4875 dmxpss2 5063 ssxpbm 5066 ssxp1 5067 cocnvres 5155 relrelss 5157 funssxp 5387 fvun1 5584 fndmdif 5623 fneqeql2 5627 tposss 6249 smores 6295 smores2 6297 tfrlemibfn 6331 tfrlemiubacc 6333 tfr1onlembfn 6347 tfr1onlemubacc 6349 tfr1onlemres 6352 tfrcllembfn 6360 tfrcllemubacc 6362 tfrcllemres 6365 frecuzrdgtcl 10414 frecuzrdgdomlem 10419 ennnfonelemex 12417 strleund 12564 strleun 12565 imasaddfnlemg 12740 dvbssntrcntop 14238 |
Copyright terms: Public domain | W3C validator |