ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmss GIF version

Theorem dmss 4922
Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmss (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)

Proof of Theorem dmss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3218 . . . 4 (𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
21eximdv 1926 . . 3 (𝐴𝐵 → (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵))
3 vex 2802 . . . 4 𝑥 ∈ V
43eldm2 4921 . . 3 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
53eldm2 4921 . . 3 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵)
62, 4, 53imtr4g 205 . 2 (𝐴𝐵 → (𝑥 ∈ dom 𝐴𝑥 ∈ dom 𝐵))
76ssrdv 3230 1 (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1538  wcel 2200  wss 3197  cop 3669  dom cdm 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-dm 4729
This theorem is referenced by:  dmeq  4923  dmv  4939  rnss  4954  dmiin  4970  dmxpss2  5161  ssxpbm  5164  ssxp1  5165  cocnvres  5253  relrelss  5255  funssxp  5495  fvun1  5702  fndmdif  5742  fneqeql2  5746  tposss  6398  smores  6444  smores2  6446  tfrlemibfn  6480  tfrlemiubacc  6482  tfr1onlembfn  6496  tfr1onlemubacc  6498  tfr1onlemres  6501  tfrcllembfn  6509  tfrcllemubacc  6511  tfrcllemres  6514  frecuzrdgtcl  10642  frecuzrdgdomlem  10647  hashdmprop2dom  11074  ennnfonelemex  12993  strleund  13144  strleun  13145  imasaddfnlemg  13355  dvbssntrcntop  15366
  Copyright terms: Public domain W3C validator