ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmss GIF version

Theorem dmss 4862
Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmss (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)

Proof of Theorem dmss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3174 . . . 4 (𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
21eximdv 1891 . . 3 (𝐴𝐵 → (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵))
3 vex 2763 . . . 4 𝑥 ∈ V
43eldm2 4861 . . 3 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
53eldm2 4861 . . 3 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵)
62, 4, 53imtr4g 205 . 2 (𝐴𝐵 → (𝑥 ∈ dom 𝐴𝑥 ∈ dom 𝐵))
76ssrdv 3186 1 (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1503  wcel 2164  wss 3154  cop 3622  dom cdm 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-dm 4670
This theorem is referenced by:  dmeq  4863  dmv  4879  rnss  4893  dmiin  4909  dmxpss2  5099  ssxpbm  5102  ssxp1  5103  cocnvres  5191  relrelss  5193  funssxp  5424  fvun1  5624  fndmdif  5664  fneqeql2  5668  tposss  6301  smores  6347  smores2  6349  tfrlemibfn  6383  tfrlemiubacc  6385  tfr1onlembfn  6399  tfr1onlemubacc  6401  tfr1onlemres  6404  tfrcllembfn  6412  tfrcllemubacc  6414  tfrcllemres  6417  frecuzrdgtcl  10486  frecuzrdgdomlem  10491  ennnfonelemex  12574  strleund  12724  strleun  12725  imasaddfnlemg  12900  dvbssntrcntop  14863
  Copyright terms: Public domain W3C validator