| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmss | GIF version | ||
| Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmss | ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3191 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 2 | 1 | eximdv 1904 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 3 | vex 2776 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm2 4884 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 5 | 3 | eldm2 4884 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
| 6 | 2, 4, 5 | 3imtr4g 205 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵)) |
| 7 | 6 | ssrdv 3203 | 1 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1516 ∈ wcel 2177 ⊆ wss 3170 〈cop 3640 dom cdm 4682 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3643 df-pr 3644 df-op 3646 df-br 4051 df-dm 4692 |
| This theorem is referenced by: dmeq 4886 dmv 4902 rnss 4916 dmiin 4932 dmxpss2 5123 ssxpbm 5126 ssxp1 5127 cocnvres 5215 relrelss 5217 funssxp 5454 fvun1 5657 fndmdif 5697 fneqeql2 5701 tposss 6344 smores 6390 smores2 6392 tfrlemibfn 6426 tfrlemiubacc 6428 tfr1onlembfn 6442 tfr1onlemubacc 6444 tfr1onlemres 6447 tfrcllembfn 6455 tfrcllemubacc 6457 tfrcllemres 6460 frecuzrdgtcl 10574 frecuzrdgdomlem 10579 hashdmprop2dom 11006 ennnfonelemex 12855 strleund 13005 strleun 13006 imasaddfnlemg 13216 dvbssntrcntop 15226 |
| Copyright terms: Public domain | W3C validator |