![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmss | GIF version |
Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
dmss | ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3041 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
2 | 1 | eximdv 1819 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
3 | vex 2644 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm2 4675 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
5 | 3 | eldm2 4675 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
6 | 2, 4, 5 | 3imtr4g 204 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵)) |
7 | 6 | ssrdv 3053 | 1 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1436 ∈ wcel 1448 ⊆ wss 3021 〈cop 3477 dom cdm 4477 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-sn 3480 df-pr 3481 df-op 3483 df-br 3876 df-dm 4487 |
This theorem is referenced by: dmeq 4677 dmv 4693 rnss 4707 dmiin 4723 dmxpss2 4907 ssxpbm 4910 ssxp1 4911 cocnvres 4999 relrelss 5001 funssxp 5228 fvun1 5419 fndmdif 5457 fneqeql2 5461 tposss 6073 smores 6119 smores2 6121 tfrlemibfn 6155 tfrlemiubacc 6157 tfr1onlembfn 6171 tfr1onlemubacc 6173 tfr1onlemres 6176 tfrcllembfn 6184 tfrcllemubacc 6186 tfrcllemres 6189 frecuzrdgtcl 10026 frecuzrdgdomlem 10031 ennnfonelemex 11719 strleund 11829 strleun 11830 dvbssntrcntop 12526 |
Copyright terms: Public domain | W3C validator |