ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnvsn GIF version

Theorem cnvcnvsn 5064
Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn 5070, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
cnvcnvsn {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}

Proof of Theorem cnvcnvsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 4966 . 2 Rel {⟨𝐴, 𝐵⟩}
2 relcnv 4966 . 2 Rel {⟨𝐵, 𝐴⟩}
3 vex 2715 . . . 4 𝑦 ∈ V
4 vex 2715 . . . 4 𝑥 ∈ V
53, 4opelcnv 4770 . . 3 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})
6 ancom 264 . . . . . 6 ((𝑦 = 𝐴𝑥 = 𝐵) ↔ (𝑥 = 𝐵𝑦 = 𝐴))
73, 4opth 4199 . . . . . 6 (⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑦 = 𝐴𝑥 = 𝐵))
84, 3opth 4199 . . . . . 6 (⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐴⟩ ↔ (𝑥 = 𝐵𝑦 = 𝐴))
96, 7, 83bitr4i 211 . . . . 5 (⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐴⟩)
103, 4opex 4191 . . . . . 6 𝑦, 𝑥⟩ ∈ V
1110elsn 3577 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩)
124, 3opex 4191 . . . . . 6 𝑥, 𝑦⟩ ∈ V
1312elsn 3577 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩} ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐴⟩)
149, 11, 133bitr4i 211 . . . 4 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩})
154, 3opelcnv 4770 . . . 4 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩})
163, 4opelcnv 4770 . . . 4 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩})
1714, 15, 163bitr4i 211 . . 3 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩})
185, 17bitri 183 . 2 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩})
191, 2, 18eqrelriiv 4682 1 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1335  wcel 2128  {csn 3561  cop 3564  ccnv 4587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-br 3968  df-opab 4028  df-xp 4594  df-rel 4595  df-cnv 4596
This theorem is referenced by:  rnsnopg  5066  cnvsn  5070
  Copyright terms: Public domain W3C validator