ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnvsn GIF version

Theorem cnvcnvsn 5080
Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn 5086, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
cnvcnvsn {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}

Proof of Theorem cnvcnvsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 4982 . 2 Rel {⟨𝐴, 𝐵⟩}
2 relcnv 4982 . 2 Rel {⟨𝐵, 𝐴⟩}
3 vex 2729 . . . 4 𝑦 ∈ V
4 vex 2729 . . . 4 𝑥 ∈ V
53, 4opelcnv 4786 . . 3 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})
6 ancom 264 . . . . . 6 ((𝑦 = 𝐴𝑥 = 𝐵) ↔ (𝑥 = 𝐵𝑦 = 𝐴))
73, 4opth 4215 . . . . . 6 (⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑦 = 𝐴𝑥 = 𝐵))
84, 3opth 4215 . . . . . 6 (⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐴⟩ ↔ (𝑥 = 𝐵𝑦 = 𝐴))
96, 7, 83bitr4i 211 . . . . 5 (⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐴⟩)
103, 4opex 4207 . . . . . 6 𝑦, 𝑥⟩ ∈ V
1110elsn 3592 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩)
124, 3opex 4207 . . . . . 6 𝑥, 𝑦⟩ ∈ V
1312elsn 3592 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩} ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐴⟩)
149, 11, 133bitr4i 211 . . . 4 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩})
154, 3opelcnv 4786 . . . 4 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩})
163, 4opelcnv 4786 . . . 4 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩})
1714, 15, 163bitr4i 211 . . 3 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩})
185, 17bitri 183 . 2 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩})
191, 2, 18eqrelriiv 4698 1 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wcel 2136  {csn 3576  cop 3579  ccnv 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612
This theorem is referenced by:  rnsnopg  5082  cnvsn  5086
  Copyright terms: Public domain W3C validator