![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvcnvsn | GIF version |
Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn 5113, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
cnvcnvsn | ⊢ ◡◡{⟨𝐴, 𝐵⟩} = ◡{⟨𝐵, 𝐴⟩} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5008 | . 2 ⊢ Rel ◡◡{⟨𝐴, 𝐵⟩} | |
2 | relcnv 5008 | . 2 ⊢ Rel ◡{⟨𝐵, 𝐴⟩} | |
3 | vex 2742 | . . . 4 ⊢ 𝑦 ∈ V | |
4 | vex 2742 | . . . 4 ⊢ 𝑥 ∈ V | |
5 | 3, 4 | opelcnv 4811 | . . 3 ⊢ (⟨𝑦, 𝑥⟩ ∈ ◡◡{⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ ◡{⟨𝐴, 𝐵⟩}) |
6 | ancom 266 | . . . . . 6 ⊢ ((𝑦 = 𝐴 ∧ 𝑥 = 𝐵) ↔ (𝑥 = 𝐵 ∧ 𝑦 = 𝐴)) | |
7 | 3, 4 | opth 4239 | . . . . . 6 ⊢ (⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑦 = 𝐴 ∧ 𝑥 = 𝐵)) |
8 | 4, 3 | opth 4239 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐴⟩ ↔ (𝑥 = 𝐵 ∧ 𝑦 = 𝐴)) |
9 | 6, 7, 8 | 3bitr4i 212 | . . . . 5 ⊢ (⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐴⟩) |
10 | 3, 4 | opex 4231 | . . . . . 6 ⊢ ⟨𝑦, 𝑥⟩ ∈ V |
11 | 10 | elsn 3610 | . . . . 5 ⊢ (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩) |
12 | 4, 3 | opex 4231 | . . . . . 6 ⊢ ⟨𝑥, 𝑦⟩ ∈ V |
13 | 12 | elsn 3610 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩} ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐴⟩) |
14 | 9, 11, 13 | 3bitr4i 212 | . . . 4 ⊢ (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩}) |
15 | 4, 3 | opelcnv 4811 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡{⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩}) |
16 | 3, 4 | opelcnv 4811 | . . . 4 ⊢ (⟨𝑦, 𝑥⟩ ∈ ◡{⟨𝐵, 𝐴⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩}) |
17 | 14, 15, 16 | 3bitr4i 212 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡{⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ ◡{⟨𝐵, 𝐴⟩}) |
18 | 5, 17 | bitri 184 | . 2 ⊢ (⟨𝑦, 𝑥⟩ ∈ ◡◡{⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ ◡{⟨𝐵, 𝐴⟩}) |
19 | 1, 2, 18 | eqrelriiv 4722 | 1 ⊢ ◡◡{⟨𝐴, 𝐵⟩} = ◡{⟨𝐵, 𝐴⟩} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∈ wcel 2148 {csn 3594 ⟨cop 3597 ◡ccnv 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 |
This theorem is referenced by: rnsnopg 5109 cnvsn 5113 |
Copyright terms: Public domain | W3C validator |