| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvcnvsn | GIF version | ||
| Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn 5165, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| cnvcnvsn | ⊢ ◡◡{〈𝐴, 𝐵〉} = ◡{〈𝐵, 𝐴〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5060 | . 2 ⊢ Rel ◡◡{〈𝐴, 𝐵〉} | |
| 2 | relcnv 5060 | . 2 ⊢ Rel ◡{〈𝐵, 𝐴〉} | |
| 3 | vex 2775 | . . . 4 ⊢ 𝑦 ∈ V | |
| 4 | vex 2775 | . . . 4 ⊢ 𝑥 ∈ V | |
| 5 | 3, 4 | opelcnv 4860 | . . 3 ⊢ (〈𝑦, 𝑥〉 ∈ ◡◡{〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 ∈ ◡{〈𝐴, 𝐵〉}) |
| 6 | ancom 266 | . . . . . 6 ⊢ ((𝑦 = 𝐴 ∧ 𝑥 = 𝐵) ↔ (𝑥 = 𝐵 ∧ 𝑦 = 𝐴)) | |
| 7 | 3, 4 | opth 4281 | . . . . . 6 ⊢ (〈𝑦, 𝑥〉 = 〈𝐴, 𝐵〉 ↔ (𝑦 = 𝐴 ∧ 𝑥 = 𝐵)) |
| 8 | 4, 3 | opth 4281 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 〈𝐵, 𝐴〉 ↔ (𝑥 = 𝐵 ∧ 𝑦 = 𝐴)) |
| 9 | 6, 7, 8 | 3bitr4i 212 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 = 〈𝐴, 𝐵〉 ↔ 〈𝑥, 𝑦〉 = 〈𝐵, 𝐴〉) |
| 10 | 3, 4 | opex 4273 | . . . . . 6 ⊢ 〈𝑦, 𝑥〉 ∈ V |
| 11 | 10 | elsn 3649 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉} ↔ 〈𝑦, 𝑥〉 = 〈𝐴, 𝐵〉) |
| 12 | 4, 3 | opex 4273 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ∈ V |
| 13 | 12 | elsn 3649 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝐵, 𝐴〉} ↔ 〈𝑥, 𝑦〉 = 〈𝐵, 𝐴〉) |
| 14 | 9, 11, 13 | 3bitr4i 212 | . . . 4 ⊢ (〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 ∈ {〈𝐵, 𝐴〉}) |
| 15 | 4, 3 | opelcnv 4860 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡{〈𝐴, 𝐵〉} ↔ 〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉}) |
| 16 | 3, 4 | opelcnv 4860 | . . . 4 ⊢ (〈𝑦, 𝑥〉 ∈ ◡{〈𝐵, 𝐴〉} ↔ 〈𝑥, 𝑦〉 ∈ {〈𝐵, 𝐴〉}) |
| 17 | 14, 15, 16 | 3bitr4i 212 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡{〈𝐴, 𝐵〉} ↔ 〈𝑦, 𝑥〉 ∈ ◡{〈𝐵, 𝐴〉}) |
| 18 | 5, 17 | bitri 184 | . 2 ⊢ (〈𝑦, 𝑥〉 ∈ ◡◡{〈𝐴, 𝐵〉} ↔ 〈𝑦, 𝑥〉 ∈ ◡{〈𝐵, 𝐴〉}) |
| 19 | 1, 2, 18 | eqrelriiv 4769 | 1 ⊢ ◡◡{〈𝐴, 𝐵〉} = ◡{〈𝐵, 𝐴〉} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2176 {csn 3633 〈cop 3636 ◡ccnv 4674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-rel 4682 df-cnv 4683 |
| This theorem is referenced by: rnsnopg 5161 cnvsn 5165 |
| Copyright terms: Public domain | W3C validator |