| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvcnvsn | GIF version | ||
| Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn 5211, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| cnvcnvsn | ⊢ ◡◡{〈𝐴, 𝐵〉} = ◡{〈𝐵, 𝐴〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5106 | . 2 ⊢ Rel ◡◡{〈𝐴, 𝐵〉} | |
| 2 | relcnv 5106 | . 2 ⊢ Rel ◡{〈𝐵, 𝐴〉} | |
| 3 | vex 2802 | . . . 4 ⊢ 𝑦 ∈ V | |
| 4 | vex 2802 | . . . 4 ⊢ 𝑥 ∈ V | |
| 5 | 3, 4 | opelcnv 4904 | . . 3 ⊢ (〈𝑦, 𝑥〉 ∈ ◡◡{〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 ∈ ◡{〈𝐴, 𝐵〉}) |
| 6 | ancom 266 | . . . . . 6 ⊢ ((𝑦 = 𝐴 ∧ 𝑥 = 𝐵) ↔ (𝑥 = 𝐵 ∧ 𝑦 = 𝐴)) | |
| 7 | 3, 4 | opth 4323 | . . . . . 6 ⊢ (〈𝑦, 𝑥〉 = 〈𝐴, 𝐵〉 ↔ (𝑦 = 𝐴 ∧ 𝑥 = 𝐵)) |
| 8 | 4, 3 | opth 4323 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 〈𝐵, 𝐴〉 ↔ (𝑥 = 𝐵 ∧ 𝑦 = 𝐴)) |
| 9 | 6, 7, 8 | 3bitr4i 212 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 = 〈𝐴, 𝐵〉 ↔ 〈𝑥, 𝑦〉 = 〈𝐵, 𝐴〉) |
| 10 | 3, 4 | opex 4315 | . . . . . 6 ⊢ 〈𝑦, 𝑥〉 ∈ V |
| 11 | 10 | elsn 3682 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉} ↔ 〈𝑦, 𝑥〉 = 〈𝐴, 𝐵〉) |
| 12 | 4, 3 | opex 4315 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ∈ V |
| 13 | 12 | elsn 3682 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝐵, 𝐴〉} ↔ 〈𝑥, 𝑦〉 = 〈𝐵, 𝐴〉) |
| 14 | 9, 11, 13 | 3bitr4i 212 | . . . 4 ⊢ (〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 ∈ {〈𝐵, 𝐴〉}) |
| 15 | 4, 3 | opelcnv 4904 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡{〈𝐴, 𝐵〉} ↔ 〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉}) |
| 16 | 3, 4 | opelcnv 4904 | . . . 4 ⊢ (〈𝑦, 𝑥〉 ∈ ◡{〈𝐵, 𝐴〉} ↔ 〈𝑥, 𝑦〉 ∈ {〈𝐵, 𝐴〉}) |
| 17 | 14, 15, 16 | 3bitr4i 212 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡{〈𝐴, 𝐵〉} ↔ 〈𝑦, 𝑥〉 ∈ ◡{〈𝐵, 𝐴〉}) |
| 18 | 5, 17 | bitri 184 | . 2 ⊢ (〈𝑦, 𝑥〉 ∈ ◡◡{〈𝐴, 𝐵〉} ↔ 〈𝑦, 𝑥〉 ∈ ◡{〈𝐵, 𝐴〉}) |
| 19 | 1, 2, 18 | eqrelriiv 4813 | 1 ⊢ ◡◡{〈𝐴, 𝐵〉} = ◡{〈𝐵, 𝐴〉} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 {csn 3666 〈cop 3669 ◡ccnv 4718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 |
| This theorem is referenced by: rnsnopg 5207 cnvsn 5211 |
| Copyright terms: Public domain | W3C validator |