ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapdm0 GIF version

Theorem mapdm0 6762
Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.)
Assertion
Ref Expression
mapdm0 (𝐵𝑉 → (𝐵𝑚 ∅) = {∅})

Proof of Theorem mapdm0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ex 4178 . . . . 5 ∅ ∈ V
2 elmapg 6760 . . . . 5 ((𝐵𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐵𝑚 ∅) ↔ 𝑓:∅⟶𝐵))
31, 2mpan2 425 . . . 4 (𝐵𝑉 → (𝑓 ∈ (𝐵𝑚 ∅) ↔ 𝑓:∅⟶𝐵))
4 f0bi 5479 . . . 4 (𝑓:∅⟶𝐵𝑓 = ∅)
53, 4bitrdi 196 . . 3 (𝐵𝑉 → (𝑓 ∈ (𝐵𝑚 ∅) ↔ 𝑓 = ∅))
6 vex 2776 . . . 4 𝑓 ∈ V
76elsn 3653 . . 3 (𝑓 ∈ {∅} ↔ 𝑓 = ∅)
85, 7bitr4di 198 . 2 (𝐵𝑉 → (𝑓 ∈ (𝐵𝑚 ∅) ↔ 𝑓 ∈ {∅}))
98eqrdv 2204 1 (𝐵𝑉 → (𝐵𝑚 ∅) = {∅})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  Vcvv 2773  c0 3464  {csn 3637  wf 5275  (class class class)co 5956  𝑚 cmap 6747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-opab 4113  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-fv 5287  df-ov 5959  df-oprab 5960  df-mpo 5961  df-map 6749
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator