ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapdm0 GIF version

Theorem mapdm0 6800
Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.)
Assertion
Ref Expression
mapdm0 (𝐵𝑉 → (𝐵𝑚 ∅) = {∅})

Proof of Theorem mapdm0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ex 4210 . . . . 5 ∅ ∈ V
2 elmapg 6798 . . . . 5 ((𝐵𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐵𝑚 ∅) ↔ 𝑓:∅⟶𝐵))
31, 2mpan2 425 . . . 4 (𝐵𝑉 → (𝑓 ∈ (𝐵𝑚 ∅) ↔ 𝑓:∅⟶𝐵))
4 f0bi 5514 . . . 4 (𝑓:∅⟶𝐵𝑓 = ∅)
53, 4bitrdi 196 . . 3 (𝐵𝑉 → (𝑓 ∈ (𝐵𝑚 ∅) ↔ 𝑓 = ∅))
6 vex 2802 . . . 4 𝑓 ∈ V
76elsn 3682 . . 3 (𝑓 ∈ {∅} ↔ 𝑓 = ∅)
85, 7bitr4di 198 . 2 (𝐵𝑉 → (𝑓 ∈ (𝐵𝑚 ∅) ↔ 𝑓 ∈ {∅}))
98eqrdv 2227 1 (𝐵𝑉 → (𝐵𝑚 ∅) = {∅})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wcel 2200  Vcvv 2799  c0 3491  {csn 3666  wf 5310  (class class class)co 5994  𝑚 cmap 6785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-map 6787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator