![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mapdm0 | GIF version |
Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.) |
Ref | Expression |
---|---|
mapdm0 | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑𝑚 ∅) = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4131 | . . . . 5 ⊢ ∅ ∈ V | |
2 | elmapg 6661 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐵 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐵)) | |
3 | 1, 2 | mpan2 425 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐵)) |
4 | f0bi 5409 | . . . 4 ⊢ (𝑓:∅⟶𝐵 ↔ 𝑓 = ∅) | |
5 | 3, 4 | bitrdi 196 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑𝑚 ∅) ↔ 𝑓 = ∅)) |
6 | vex 2741 | . . . 4 ⊢ 𝑓 ∈ V | |
7 | 6 | elsn 3609 | . . 3 ⊢ (𝑓 ∈ {∅} ↔ 𝑓 = ∅) |
8 | 5, 7 | bitr4di 198 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑𝑚 ∅) ↔ 𝑓 ∈ {∅})) |
9 | 8 | eqrdv 2175 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑𝑚 ∅) = {∅}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2148 Vcvv 2738 ∅c0 3423 {csn 3593 ⟶wf 5213 (class class class)co 5875 ↑𝑚 cmap 6648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-map 6650 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |