![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mapdm0 | GIF version |
Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.) |
Ref | Expression |
---|---|
mapdm0 | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑𝑚 ∅) = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4156 | . . . . 5 ⊢ ∅ ∈ V | |
2 | elmapg 6715 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐵 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐵)) | |
3 | 1, 2 | mpan2 425 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐵)) |
4 | f0bi 5446 | . . . 4 ⊢ (𝑓:∅⟶𝐵 ↔ 𝑓 = ∅) | |
5 | 3, 4 | bitrdi 196 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑𝑚 ∅) ↔ 𝑓 = ∅)) |
6 | vex 2763 | . . . 4 ⊢ 𝑓 ∈ V | |
7 | 6 | elsn 3634 | . . 3 ⊢ (𝑓 ∈ {∅} ↔ 𝑓 = ∅) |
8 | 5, 7 | bitr4di 198 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑𝑚 ∅) ↔ 𝑓 ∈ {∅})) |
9 | 8 | eqrdv 2191 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑𝑚 ∅) = {∅}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∅c0 3446 {csn 3618 ⟶wf 5250 (class class class)co 5918 ↑𝑚 cmap 6702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-map 6704 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |