ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapdm0 GIF version

Theorem mapdm0 6641
Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.)
Assertion
Ref Expression
mapdm0 (𝐵𝑉 → (𝐵𝑚 ∅) = {∅})

Proof of Theorem mapdm0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ex 4116 . . . . 5 ∅ ∈ V
2 elmapg 6639 . . . . 5 ((𝐵𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐵𝑚 ∅) ↔ 𝑓:∅⟶𝐵))
31, 2mpan2 423 . . . 4 (𝐵𝑉 → (𝑓 ∈ (𝐵𝑚 ∅) ↔ 𝑓:∅⟶𝐵))
4 f0bi 5390 . . . 4 (𝑓:∅⟶𝐵𝑓 = ∅)
53, 4bitrdi 195 . . 3 (𝐵𝑉 → (𝑓 ∈ (𝐵𝑚 ∅) ↔ 𝑓 = ∅))
6 vex 2733 . . . 4 𝑓 ∈ V
76elsn 3599 . . 3 (𝑓 ∈ {∅} ↔ 𝑓 = ∅)
85, 7bitr4di 197 . 2 (𝐵𝑉 → (𝑓 ∈ (𝐵𝑚 ∅) ↔ 𝑓 ∈ {∅}))
98eqrdv 2168 1 (𝐵𝑉 → (𝐵𝑚 ∅) = {∅})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wcel 2141  Vcvv 2730  c0 3414  {csn 3583  wf 5194  (class class class)co 5853  𝑚 cmap 6626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-map 6628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator