| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapdm0 | GIF version | ||
| Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.) |
| Ref | Expression |
|---|---|
| mapdm0 | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑𝑚 ∅) = {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4210 | . . . . 5 ⊢ ∅ ∈ V | |
| 2 | elmapg 6798 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐵 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐵)) | |
| 3 | 1, 2 | mpan2 425 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐵)) |
| 4 | f0bi 5514 | . . . 4 ⊢ (𝑓:∅⟶𝐵 ↔ 𝑓 = ∅) | |
| 5 | 3, 4 | bitrdi 196 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑𝑚 ∅) ↔ 𝑓 = ∅)) |
| 6 | vex 2802 | . . . 4 ⊢ 𝑓 ∈ V | |
| 7 | 6 | elsn 3682 | . . 3 ⊢ (𝑓 ∈ {∅} ↔ 𝑓 = ∅) |
| 8 | 5, 7 | bitr4di 198 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑𝑚 ∅) ↔ 𝑓 ∈ {∅})) |
| 9 | 8 | eqrdv 2227 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑𝑚 ∅) = {∅}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∅c0 3491 {csn 3666 ⟶wf 5310 (class class class)co 5994 ↑𝑚 cmap 6785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-map 6787 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |