![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmsnopg | GIF version |
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
dmsnopg | ⊢ (𝐵 ∈ 𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2742 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 2742 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opth1 4238 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑥 = 𝐴) |
4 | 3 | exlimiv 1598 | . . . 4 ⊢ (∃𝑦⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑥 = 𝐴) |
5 | opeq1 3780 | . . . . 5 ⊢ (𝑥 = 𝐴 → ⟨𝑥, 𝐵⟩ = ⟨𝐴, 𝐵⟩) | |
6 | opeq2 3781 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝐵⟩) | |
7 | 6 | eqeq1d 2186 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝑥, 𝐵⟩ = ⟨𝐴, 𝐵⟩)) |
8 | 7 | spcegv 2827 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (⟨𝑥, 𝐵⟩ = ⟨𝐴, 𝐵⟩ → ∃𝑦⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)) |
9 | 5, 8 | syl5 32 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑥 = 𝐴 → ∃𝑦⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)) |
10 | 4, 9 | impbid2 143 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∃𝑦⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ 𝑥 = 𝐴)) |
11 | 1 | eldm2 4827 | . . . 4 ⊢ (𝑥 ∈ dom {⟨𝐴, 𝐵⟩} ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩}) |
12 | 1, 2 | opex 4231 | . . . . . 6 ⊢ ⟨𝑥, 𝑦⟩ ∈ V |
13 | 12 | elsn 3610 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩) |
14 | 13 | exbii 1605 | . . . 4 ⊢ (∃𝑦⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ∃𝑦⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩) |
15 | 11, 14 | bitri 184 | . . 3 ⊢ (𝑥 ∈ dom {⟨𝐴, 𝐵⟩} ↔ ∃𝑦⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩) |
16 | velsn 3611 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
17 | 10, 15, 16 | 3bitr4g 223 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ dom {⟨𝐴, 𝐵⟩} ↔ 𝑥 ∈ {𝐴})) |
18 | 17 | eqrdv 2175 | 1 ⊢ (𝐵 ∈ 𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∃wex 1492 ∈ wcel 2148 {csn 3594 ⟨cop 3597 dom cdm 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-dm 4638 |
This theorem is referenced by: dmpropg 5103 dmsnop 5104 rnsnopg 5109 elxp4 5118 fnsng 5265 funprg 5268 funtpg 5269 fntpg 5274 ennnfonelemhdmp1 12412 ennnfonelemkh 12415 setsvala 12495 setsresg 12502 setscom 12504 setsslid 12515 strle1g 12567 |
Copyright terms: Public domain | W3C validator |