| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmsnopg | GIF version | ||
| Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| dmsnopg | ⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2774 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | vex 2774 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | opth1 4279 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 → 𝑥 = 𝐴) |
| 4 | 3 | exlimiv 1620 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 → 𝑥 = 𝐴) |
| 5 | opeq1 3818 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝐵〉 = 〈𝐴, 𝐵〉) | |
| 6 | opeq2 3819 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝐵〉) | |
| 7 | 6 | eqeq1d 2213 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 ↔ 〈𝑥, 𝐵〉 = 〈𝐴, 𝐵〉)) |
| 8 | 7 | spcegv 2860 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (〈𝑥, 𝐵〉 = 〈𝐴, 𝐵〉 → ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉)) |
| 9 | 5, 8 | syl5 32 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑥 = 𝐴 → ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉)) |
| 10 | 4, 9 | impbid2 143 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 ↔ 𝑥 = 𝐴)) |
| 11 | 1 | eldm2 4874 | . . . 4 ⊢ (𝑥 ∈ dom {〈𝐴, 𝐵〉} ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉}) |
| 12 | 1, 2 | opex 4272 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ∈ V |
| 13 | 12 | elsn 3648 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
| 14 | 13 | exbii 1627 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉} ↔ ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
| 15 | 11, 14 | bitri 184 | . . 3 ⊢ (𝑥 ∈ dom {〈𝐴, 𝐵〉} ↔ ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
| 16 | velsn 3649 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 17 | 10, 15, 16 | 3bitr4g 223 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ dom {〈𝐴, 𝐵〉} ↔ 𝑥 ∈ {𝐴})) |
| 18 | 17 | eqrdv 2202 | 1 ⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∃wex 1514 ∈ wcel 2175 {csn 3632 〈cop 3635 dom cdm 4673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-dm 4683 |
| This theorem is referenced by: dmpropg 5152 dmsnop 5153 rnsnopg 5158 elxp4 5167 fnsng 5315 funprg 5318 funtpg 5319 fntpg 5324 ennnfonelemhdmp1 12699 ennnfonelemkh 12702 setsvala 12782 setsresg 12789 setscom 12791 setsslid 12802 strle1g 12857 |
| Copyright terms: Public domain | W3C validator |