Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmsnopg | GIF version |
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
dmsnopg | ⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 2733 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opth1 4221 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 → 𝑥 = 𝐴) |
4 | 3 | exlimiv 1591 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 → 𝑥 = 𝐴) |
5 | opeq1 3765 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝐵〉 = 〈𝐴, 𝐵〉) | |
6 | opeq2 3766 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝐵〉) | |
7 | 6 | eqeq1d 2179 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 ↔ 〈𝑥, 𝐵〉 = 〈𝐴, 𝐵〉)) |
8 | 7 | spcegv 2818 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (〈𝑥, 𝐵〉 = 〈𝐴, 𝐵〉 → ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉)) |
9 | 5, 8 | syl5 32 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑥 = 𝐴 → ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉)) |
10 | 4, 9 | impbid2 142 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 ↔ 𝑥 = 𝐴)) |
11 | 1 | eldm2 4809 | . . . 4 ⊢ (𝑥 ∈ dom {〈𝐴, 𝐵〉} ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉}) |
12 | 1, 2 | opex 4214 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ∈ V |
13 | 12 | elsn 3599 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
14 | 13 | exbii 1598 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉} ↔ ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
15 | 11, 14 | bitri 183 | . . 3 ⊢ (𝑥 ∈ dom {〈𝐴, 𝐵〉} ↔ ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
16 | velsn 3600 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
17 | 10, 15, 16 | 3bitr4g 222 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ dom {〈𝐴, 𝐵〉} ↔ 𝑥 ∈ {𝐴})) |
18 | 17 | eqrdv 2168 | 1 ⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∃wex 1485 ∈ wcel 2141 {csn 3583 〈cop 3586 dom cdm 4611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-dm 4621 |
This theorem is referenced by: dmpropg 5083 dmsnop 5084 rnsnopg 5089 elxp4 5098 fnsng 5245 funprg 5248 funtpg 5249 fntpg 5254 ennnfonelemhdmp1 12364 ennnfonelemkh 12367 setsvala 12447 setsresg 12454 setscom 12456 setsslid 12466 strle1g 12508 |
Copyright terms: Public domain | W3C validator |