ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsnopg GIF version

Theorem dmsnopg 5151
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmsnopg (𝐵𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴})

Proof of Theorem dmsnopg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2774 . . . . . 6 𝑥 ∈ V
2 vex 2774 . . . . . 6 𝑦 ∈ V
31, 2opth1 4279 . . . . 5 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑥 = 𝐴)
43exlimiv 1620 . . . 4 (∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑥 = 𝐴)
5 opeq1 3818 . . . . 5 (𝑥 = 𝐴 → ⟨𝑥, 𝐵⟩ = ⟨𝐴, 𝐵⟩)
6 opeq2 3819 . . . . . . 7 (𝑦 = 𝐵 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝐵⟩)
76eqeq1d 2213 . . . . . 6 (𝑦 = 𝐵 → (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝑥, 𝐵⟩ = ⟨𝐴, 𝐵⟩))
87spcegv 2860 . . . . 5 (𝐵𝑉 → (⟨𝑥, 𝐵⟩ = ⟨𝐴, 𝐵⟩ → ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩))
95, 8syl5 32 . . . 4 (𝐵𝑉 → (𝑥 = 𝐴 → ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩))
104, 9impbid2 143 . . 3 (𝐵𝑉 → (∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ 𝑥 = 𝐴))
111eldm2 4874 . . . 4 (𝑥 ∈ dom {⟨𝐴, 𝐵⟩} ↔ ∃𝑦𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})
121, 2opex 4272 . . . . . 6 𝑥, 𝑦⟩ ∈ V
1312elsn 3648 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
1413exbii 1627 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
1511, 14bitri 184 . . 3 (𝑥 ∈ dom {⟨𝐴, 𝐵⟩} ↔ ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
16 velsn 3649 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
1710, 15, 163bitr4g 223 . 2 (𝐵𝑉 → (𝑥 ∈ dom {⟨𝐴, 𝐵⟩} ↔ 𝑥 ∈ {𝐴}))
1817eqrdv 2202 1 (𝐵𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wex 1514  wcel 2175  {csn 3632  cop 3635  dom cdm 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-dm 4683
This theorem is referenced by:  dmpropg  5152  dmsnop  5153  rnsnopg  5158  elxp4  5167  fnsng  5315  funprg  5318  funtpg  5319  fntpg  5324  ennnfonelemhdmp1  12699  ennnfonelemkh  12702  setsvala  12782  setsresg  12789  setscom  12791  setsslid  12802  strle1g  12857
  Copyright terms: Public domain W3C validator