ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsnopg GIF version

Theorem dmsnopg 5069
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmsnopg (𝐵𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴})

Proof of Theorem dmsnopg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2724 . . . . . 6 𝑥 ∈ V
2 vex 2724 . . . . . 6 𝑦 ∈ V
31, 2opth1 4208 . . . . 5 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑥 = 𝐴)
43exlimiv 1585 . . . 4 (∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑥 = 𝐴)
5 opeq1 3752 . . . . 5 (𝑥 = 𝐴 → ⟨𝑥, 𝐵⟩ = ⟨𝐴, 𝐵⟩)
6 opeq2 3753 . . . . . . 7 (𝑦 = 𝐵 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝐵⟩)
76eqeq1d 2173 . . . . . 6 (𝑦 = 𝐵 → (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝑥, 𝐵⟩ = ⟨𝐴, 𝐵⟩))
87spcegv 2809 . . . . 5 (𝐵𝑉 → (⟨𝑥, 𝐵⟩ = ⟨𝐴, 𝐵⟩ → ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩))
95, 8syl5 32 . . . 4 (𝐵𝑉 → (𝑥 = 𝐴 → ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩))
104, 9impbid2 142 . . 3 (𝐵𝑉 → (∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ 𝑥 = 𝐴))
111eldm2 4796 . . . 4 (𝑥 ∈ dom {⟨𝐴, 𝐵⟩} ↔ ∃𝑦𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})
121, 2opex 4201 . . . . . 6 𝑥, 𝑦⟩ ∈ V
1312elsn 3586 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
1413exbii 1592 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
1511, 14bitri 183 . . 3 (𝑥 ∈ dom {⟨𝐴, 𝐵⟩} ↔ ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
16 velsn 3587 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
1710, 15, 163bitr4g 222 . 2 (𝐵𝑉 → (𝑥 ∈ dom {⟨𝐴, 𝐵⟩} ↔ 𝑥 ∈ {𝐴}))
1817eqrdv 2162 1 (𝐵𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1342  wex 1479  wcel 2135  {csn 3570  cop 3573  dom cdm 4598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-v 2723  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-br 3977  df-dm 4608
This theorem is referenced by:  dmpropg  5070  dmsnop  5071  rnsnopg  5076  elxp4  5085  fnsng  5229  funprg  5232  funtpg  5233  fntpg  5238  ennnfonelemhdmp1  12279  ennnfonelemkh  12282  setsvala  12362  setsresg  12369  setscom  12371  setsslid  12381  strle1g  12421
  Copyright terms: Public domain W3C validator