ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unielxp GIF version

Theorem unielxp 6310
Description: The membership relation for a cross product is inherited by union. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unielxp (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 (𝐵 × 𝐶))

Proof of Theorem unielxp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elxp7 6306 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
2 elvvuni 4780 . . . 4 (𝐴 ∈ (V × V) → 𝐴𝐴)
32adantr 276 . . 3 ((𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) → 𝐴𝐴)
4 simprl 529 . . . . . 6 (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → 𝐴 ∈ (V × V))
5 eleq2 2293 . . . . . . . 8 (𝑥 = 𝐴 → ( 𝐴𝑥 𝐴𝐴))
6 eleq1 2292 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥 ∈ (V × V) ↔ 𝐴 ∈ (V × V)))
7 fveq2 5623 . . . . . . . . . . 11 (𝑥 = 𝐴 → (1st𝑥) = (1st𝐴))
87eleq1d 2298 . . . . . . . . . 10 (𝑥 = 𝐴 → ((1st𝑥) ∈ 𝐵 ↔ (1st𝐴) ∈ 𝐵))
9 fveq2 5623 . . . . . . . . . . 11 (𝑥 = 𝐴 → (2nd𝑥) = (2nd𝐴))
109eleq1d 2298 . . . . . . . . . 10 (𝑥 = 𝐴 → ((2nd𝑥) ∈ 𝐶 ↔ (2nd𝐴) ∈ 𝐶))
118, 10anbi12d 473 . . . . . . . . 9 (𝑥 = 𝐴 → (((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶) ↔ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
126, 11anbi12d 473 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶)) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))))
135, 12anbi12d 473 . . . . . . 7 (𝑥 = 𝐴 → (( 𝐴𝑥 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))) ↔ ( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))))
1413spcegv 2891 . . . . . 6 (𝐴 ∈ (V × V) → (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → ∃𝑥( 𝐴𝑥 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶)))))
154, 14mpcom 36 . . . . 5 (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → ∃𝑥( 𝐴𝑥 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))))
16 eluniab 3899 . . . . 5 ( 𝐴 {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))} ↔ ∃𝑥( 𝐴𝑥 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))))
1715, 16sylibr 134 . . . 4 (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → 𝐴 {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))})
18 xp2 6309 . . . . . 6 (𝐵 × 𝐶) = {𝑥 ∈ (V × V) ∣ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶)}
19 df-rab 2517 . . . . . 6 {𝑥 ∈ (V × V) ∣ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶)} = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))}
2018, 19eqtri 2250 . . . . 5 (𝐵 × 𝐶) = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))}
2120unieqi 3897 . . . 4 (𝐵 × 𝐶) = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))}
2217, 21eleqtrrdi 2323 . . 3 (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → 𝐴 (𝐵 × 𝐶))
233, 22mpancom 422 . 2 ((𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) → 𝐴 (𝐵 × 𝐶))
241, 23sylbi 121 1 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 (𝐵 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wex 1538  wcel 2200  {cab 2215  {crab 2512  Vcvv 2799   cuni 3887   × cxp 4714  cfv 5314  1st c1st 6274  2nd c2nd 6275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fo 5320  df-fv 5322  df-1st 6276  df-2nd 6277
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator