ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unielxp GIF version

Theorem unielxp 6065
Description: The membership relation for a cross product is inherited by union. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unielxp (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 (𝐵 × 𝐶))

Proof of Theorem unielxp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elxp7 6061 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
2 elvvuni 4598 . . . 4 (𝐴 ∈ (V × V) → 𝐴𝐴)
32adantr 274 . . 3 ((𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) → 𝐴𝐴)
4 simprl 520 . . . . . 6 (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → 𝐴 ∈ (V × V))
5 eleq2 2201 . . . . . . . 8 (𝑥 = 𝐴 → ( 𝐴𝑥 𝐴𝐴))
6 eleq1 2200 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥 ∈ (V × V) ↔ 𝐴 ∈ (V × V)))
7 fveq2 5414 . . . . . . . . . . 11 (𝑥 = 𝐴 → (1st𝑥) = (1st𝐴))
87eleq1d 2206 . . . . . . . . . 10 (𝑥 = 𝐴 → ((1st𝑥) ∈ 𝐵 ↔ (1st𝐴) ∈ 𝐵))
9 fveq2 5414 . . . . . . . . . . 11 (𝑥 = 𝐴 → (2nd𝑥) = (2nd𝐴))
109eleq1d 2206 . . . . . . . . . 10 (𝑥 = 𝐴 → ((2nd𝑥) ∈ 𝐶 ↔ (2nd𝐴) ∈ 𝐶))
118, 10anbi12d 464 . . . . . . . . 9 (𝑥 = 𝐴 → (((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶) ↔ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
126, 11anbi12d 464 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶)) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))))
135, 12anbi12d 464 . . . . . . 7 (𝑥 = 𝐴 → (( 𝐴𝑥 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))) ↔ ( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))))
1413spcegv 2769 . . . . . 6 (𝐴 ∈ (V × V) → (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → ∃𝑥( 𝐴𝑥 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶)))))
154, 14mpcom 36 . . . . 5 (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → ∃𝑥( 𝐴𝑥 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))))
16 eluniab 3743 . . . . 5 ( 𝐴 {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))} ↔ ∃𝑥( 𝐴𝑥 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))))
1715, 16sylibr 133 . . . 4 (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → 𝐴 {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))})
18 xp2 6064 . . . . . 6 (𝐵 × 𝐶) = {𝑥 ∈ (V × V) ∣ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶)}
19 df-rab 2423 . . . . . 6 {𝑥 ∈ (V × V) ∣ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶)} = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))}
2018, 19eqtri 2158 . . . . 5 (𝐵 × 𝐶) = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))}
2120unieqi 3741 . . . 4 (𝐵 × 𝐶) = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))}
2217, 21eleqtrrdi 2231 . . 3 (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → 𝐴 (𝐵 × 𝐶))
233, 22mpancom 418 . 2 ((𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) → 𝐴 (𝐵 × 𝐶))
241, 23sylbi 120 1 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 (𝐵 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wex 1468  wcel 1480  {cab 2123  {crab 2418  Vcvv 2681   cuni 3731   × cxp 4532  cfv 5118  1st c1st 6029  2nd c2nd 6030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fo 5124  df-fv 5126  df-1st 6031  df-2nd 6032
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator