| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrriv | GIF version | ||
| Description: Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| eqbrriv.1 | ⊢ Rel 𝐴 |
| eqbrriv.2 | ⊢ Rel 𝐵 |
| eqbrriv.3 | ⊢ (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦) |
| Ref | Expression |
|---|---|
| eqbrriv | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrriv.1 | . 2 ⊢ Rel 𝐴 | |
| 2 | eqbrriv.2 | . 2 ⊢ Rel 𝐵 | |
| 3 | eqbrriv.3 | . . 3 ⊢ (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦) | |
| 4 | df-br 4083 | . . 3 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 5 | df-br 4083 | . . 3 ⊢ (𝑥𝐵𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
| 6 | 3, 4, 5 | 3bitr3i 210 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) |
| 7 | 1, 2, 6 | eqrelriiv 4810 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∈ wcel 2200 〈cop 3669 class class class wbr 4082 Rel wrel 4721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4722 df-rel 4723 |
| This theorem is referenced by: resco 5229 tpostpos 6400 |
| Copyright terms: Public domain | W3C validator |