Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqbrriv | GIF version |
Description: Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
eqbrriv.1 | ⊢ Rel 𝐴 |
eqbrriv.2 | ⊢ Rel 𝐵 |
eqbrriv.3 | ⊢ (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦) |
Ref | Expression |
---|---|
eqbrriv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrriv.1 | . 2 ⊢ Rel 𝐴 | |
2 | eqbrriv.2 | . 2 ⊢ Rel 𝐵 | |
3 | eqbrriv.3 | . . 3 ⊢ (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦) | |
4 | df-br 3999 | . . 3 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
5 | df-br 3999 | . . 3 ⊢ (𝑥𝐵𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
6 | 3, 4, 5 | 3bitr3i 210 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) |
7 | 1, 2, 6 | eqrelriiv 4714 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 ∈ wcel 2146 〈cop 3592 class class class wbr 3998 Rel wrel 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 |
This theorem is referenced by: resco 5125 tpostpos 6255 |
Copyright terms: Public domain | W3C validator |