ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrriv GIF version

Theorem eqbrriv 4758
Description: Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006.)
Hypotheses
Ref Expression
eqbrriv.1 Rel 𝐴
eqbrriv.2 Rel 𝐵
eqbrriv.3 (𝑥𝐴𝑦𝑥𝐵𝑦)
Assertion
Ref Expression
eqbrriv 𝐴 = 𝐵
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem eqbrriv
StepHypRef Expression
1 eqbrriv.1 . 2 Rel 𝐴
2 eqbrriv.2 . 2 Rel 𝐵
3 eqbrriv.3 . . 3 (𝑥𝐴𝑦𝑥𝐵𝑦)
4 df-br 4034 . . 3 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
5 df-br 4034 . . 3 (𝑥𝐵𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
63, 4, 53bitr3i 210 . 2 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
71, 2, 6eqrelriiv 4757 1 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2167  cop 3625   class class class wbr 4033  Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670
This theorem is referenced by:  resco  5174  tpostpos  6322
  Copyright terms: Public domain W3C validator