| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqrelriiv | GIF version | ||
| Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.) |
| Ref | Expression |
|---|---|
| eqreliiv.1 | ⊢ Rel 𝐴 |
| eqreliiv.2 | ⊢ Rel 𝐵 |
| eqreliiv.3 | ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| eqrelriiv | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqreliiv.1 | . 2 ⊢ Rel 𝐴 | |
| 2 | eqreliiv.2 | . 2 ⊢ Rel 𝐵 | |
| 3 | eqreliiv.3 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
| 4 | 3 | eqrelriv 4767 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵) |
| 5 | 1, 2, 4 | mp2an 426 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1372 ∈ wcel 2175 〈cop 3635 Rel wrel 4679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-opab 4105 df-xp 4680 df-rel 4681 |
| This theorem is referenced by: eqbrriv 4769 inopab 4809 difopab 4810 dfres2 5010 restidsing 5014 cnvopab 5083 cnv0 5085 cnvdif 5088 cnvcnvsn 5158 dfco2 5181 coiun 5191 co02 5195 coass 5200 ressn 5222 |
| Copyright terms: Public domain | W3C validator |