![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqrelriiv | GIF version |
Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.) |
Ref | Expression |
---|---|
eqreliiv.1 | ⊢ Rel 𝐴 |
eqreliiv.2 | ⊢ Rel 𝐵 |
eqreliiv.3 | ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) |
Ref | Expression |
---|---|
eqrelriiv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqreliiv.1 | . 2 ⊢ Rel 𝐴 | |
2 | eqreliiv.2 | . 2 ⊢ Rel 𝐵 | |
3 | eqreliiv.3 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
4 | 3 | eqrelriv 4753 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵) |
5 | 1, 2, 4 | mp2an 426 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2164 〈cop 3622 Rel wrel 4665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-opab 4092 df-xp 4666 df-rel 4667 |
This theorem is referenced by: eqbrriv 4755 inopab 4795 difopab 4796 dfres2 4995 restidsing 4999 cnvopab 5068 cnv0 5070 cnvdif 5073 cnvcnvsn 5143 dfco2 5166 coiun 5176 co02 5180 coass 5185 ressn 5207 |
Copyright terms: Public domain | W3C validator |