ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrelriiv GIF version

Theorem eqrelriiv 4812
Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.)
Hypotheses
Ref Expression
eqreliiv.1 Rel 𝐴
eqreliiv.2 Rel 𝐵
eqreliiv.3 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
Assertion
Ref Expression
eqrelriiv 𝐴 = 𝐵
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem eqrelriiv
StepHypRef Expression
1 eqreliiv.1 . 2 Rel 𝐴
2 eqreliiv.2 . 2 Rel 𝐵
3 eqreliiv.3 . . 3 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
43eqrelriv 4811 . 2 ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵)
51, 2, 4mp2an 426 1 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  wcel 2200  cop 3669  Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4145  df-xp 4724  df-rel 4725
This theorem is referenced by:  eqbrriv  4813  inopab  4853  difopab  4854  dfres2  5056  restidsing  5060  cnvopab  5129  cnv0  5131  cnvdif  5134  cnvcnvsn  5204  dfco2  5227  coiun  5237  co02  5241  coass  5246  ressn  5268
  Copyright terms: Public domain W3C validator