| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > coseq00topi | GIF version | ||
| Description: Location of the zeroes of cosine in (0[,]π). (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| coseq00topi | ⊢ (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8071 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 2 | pire 15229 | . . . . 5 ⊢ π ∈ ℝ | |
| 3 | 1, 2 | elicc2i 10060 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π)) |
| 4 | 3 | simp1bi 1014 | . . 3 ⊢ (𝐴 ∈ (0[,]π) → 𝐴 ∈ ℝ) |
| 5 | neghalfpire 15236 | . . . . 5 ⊢ -(π / 2) ∈ ℝ | |
| 6 | 5 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → -(π / 2) ∈ ℝ) |
| 7 | 1 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → 0 ∈ ℝ) |
| 8 | pirp 15232 | . . . . . . . 8 ⊢ π ∈ ℝ+ | |
| 9 | rphalfcl 9802 | . . . . . . . 8 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . . 7 ⊢ (π / 2) ∈ ℝ+ |
| 11 | rpgt0 9786 | . . . . . . 7 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ 0 < (π / 2) |
| 13 | halfpire 15235 | . . . . . . 7 ⊢ (π / 2) ∈ ℝ | |
| 14 | lt0neg2 8541 | . . . . . . 7 ⊢ ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0)) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (0 < (π / 2) ↔ -(π / 2) < 0) |
| 16 | 12, 15 | mpbi 145 | . . . . 5 ⊢ -(π / 2) < 0 |
| 17 | 16 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → -(π / 2) < 0) |
| 18 | 3 | simp2bi 1015 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → 0 ≤ 𝐴) |
| 19 | 6, 7, 4, 17, 18 | ltletrd 8495 | . . 3 ⊢ (𝐴 ∈ (0[,]π) → -(π / 2) < 𝐴) |
| 20 | 2 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → π ∈ ℝ) |
| 21 | 3re 9109 | . . . . . 6 ⊢ 3 ∈ ℝ | |
| 22 | 21, 13 | remulcli 8085 | . . . . 5 ⊢ (3 · (π / 2)) ∈ ℝ |
| 23 | 22 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → (3 · (π / 2)) ∈ ℝ) |
| 24 | 3 | simp3bi 1016 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → 𝐴 ≤ π) |
| 25 | 2div2e1 9168 | . . . . . . . 8 ⊢ (2 / 2) = 1 | |
| 26 | 2lt3 9206 | . . . . . . . . 9 ⊢ 2 < 3 | |
| 27 | 2re 9105 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 28 | 2pos 9126 | . . . . . . . . . 10 ⊢ 0 < 2 | |
| 29 | 27, 21, 27, 28 | ltdiv1ii 9001 | . . . . . . . . 9 ⊢ (2 < 3 ↔ (2 / 2) < (3 / 2)) |
| 30 | 26, 29 | mpbi 145 | . . . . . . . 8 ⊢ (2 / 2) < (3 / 2) |
| 31 | 25, 30 | eqbrtrri 4066 | . . . . . . 7 ⊢ 1 < (3 / 2) |
| 32 | 21 | rehalfcli 9285 | . . . . . . . 8 ⊢ (3 / 2) ∈ ℝ |
| 33 | pipos 15231 | . . . . . . . 8 ⊢ 0 < π | |
| 34 | ltmulgt12 8937 | . . . . . . . 8 ⊢ ((π ∈ ℝ ∧ (3 / 2) ∈ ℝ ∧ 0 < π) → (1 < (3 / 2) ↔ π < ((3 / 2) · π))) | |
| 35 | 2, 32, 33, 34 | mp3an 1349 | . . . . . . 7 ⊢ (1 < (3 / 2) ↔ π < ((3 / 2) · π)) |
| 36 | 31, 35 | mpbi 145 | . . . . . 6 ⊢ π < ((3 / 2) · π) |
| 37 | 21 | recni 8083 | . . . . . . 7 ⊢ 3 ∈ ℂ |
| 38 | 2cn 9106 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
| 39 | 2ap0 9128 | . . . . . . . 8 ⊢ 2 # 0 | |
| 40 | 38, 39 | pm3.2i 272 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
| 41 | 2 | recni 8083 | . . . . . . 7 ⊢ π ∈ ℂ |
| 42 | div32ap 8764 | . . . . . . 7 ⊢ ((3 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ π ∈ ℂ) → ((3 / 2) · π) = (3 · (π / 2))) | |
| 43 | 37, 40, 41, 42 | mp3an 1349 | . . . . . 6 ⊢ ((3 / 2) · π) = (3 · (π / 2)) |
| 44 | 36, 43 | breqtri 4068 | . . . . 5 ⊢ π < (3 · (π / 2)) |
| 45 | 44 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → π < (3 · (π / 2))) |
| 46 | 4, 20, 23, 24, 45 | lelttrd 8196 | . . 3 ⊢ (𝐴 ∈ (0[,]π) → 𝐴 < (3 · (π / 2))) |
| 47 | neghalfpirx 15237 | . . . 4 ⊢ -(π / 2) ∈ ℝ* | |
| 48 | 22 | rexri 8129 | . . . 4 ⊢ (3 · (π / 2)) ∈ ℝ* |
| 49 | elioo2 10042 | . . . 4 ⊢ ((-(π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴 ∧ 𝐴 < (3 · (π / 2))))) | |
| 50 | 47, 48, 49 | mp2an 426 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴 ∧ 𝐴 < (3 · (π / 2)))) |
| 51 | 4, 19, 46, 50 | syl3anbrc 1183 | . 2 ⊢ (𝐴 ∈ (0[,]π) → 𝐴 ∈ (-(π / 2)(,)(3 · (π / 2)))) |
| 52 | coseq0q4123 15277 | . 2 ⊢ (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2))) | |
| 53 | 51, 52 | syl 14 | 1 ⊢ (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 ‘cfv 5270 (class class class)co 5943 ℂcc 7922 ℝcr 7923 0cc0 7924 1c1 7925 · cmul 7929 ℝ*cxr 8105 < clt 8106 ≤ cle 8107 -cneg 8243 # cap 8653 / cdiv 8744 2c2 9086 3c3 9087 ℝ+crp 9774 (,)cioo 10009 [,]cicc 10012 cosccos 11927 πcpi 11929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 ax-pre-suploc 8045 ax-addf 8046 ax-mulf 8047 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-disj 4021 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-of 6157 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-map 6736 df-pm 6737 df-en 6827 df-dom 6828 df-fin 6829 df-sup 7085 df-inf 7086 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-xneg 9893 df-xadd 9894 df-ioo 10013 df-ioc 10014 df-ico 10015 df-icc 10016 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-fac 10869 df-bc 10891 df-ihash 10919 df-shft 11097 df-cj 11124 df-re 11125 df-im 11126 df-rsqrt 11280 df-abs 11281 df-clim 11561 df-sumdc 11636 df-ef 11930 df-sin 11932 df-cos 11933 df-pi 11935 df-rest 13044 df-topgen 13063 df-psmet 14276 df-xmet 14277 df-met 14278 df-bl 14279 df-mopn 14280 df-top 14441 df-topon 14454 df-bases 14486 df-ntr 14539 df-cn 14631 df-cnp 14632 df-tx 14696 df-cncf 15014 df-limced 15099 df-dvap 15100 |
| This theorem is referenced by: coseq0negpitopi 15279 |
| Copyright terms: Public domain | W3C validator |