![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > coseq00topi | GIF version |
Description: Location of the zeroes of cosine in (0[,]π). (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
coseq00topi | ⊢ (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7986 | . . . . 5 ⊢ 0 ∈ ℝ | |
2 | pire 14659 | . . . . 5 ⊢ π ∈ ℝ | |
3 | 1, 2 | elicc2i 9968 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π)) |
4 | 3 | simp1bi 1014 | . . 3 ⊢ (𝐴 ∈ (0[,]π) → 𝐴 ∈ ℝ) |
5 | neghalfpire 14666 | . . . . 5 ⊢ -(π / 2) ∈ ℝ | |
6 | 5 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → -(π / 2) ∈ ℝ) |
7 | 1 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → 0 ∈ ℝ) |
8 | pirp 14662 | . . . . . . . 8 ⊢ π ∈ ℝ+ | |
9 | rphalfcl 9710 | . . . . . . . 8 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
10 | 8, 9 | ax-mp 5 | . . . . . . 7 ⊢ (π / 2) ∈ ℝ+ |
11 | rpgt0 9694 | . . . . . . 7 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ 0 < (π / 2) |
13 | halfpire 14665 | . . . . . . 7 ⊢ (π / 2) ∈ ℝ | |
14 | lt0neg2 8455 | . . . . . . 7 ⊢ ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0)) | |
15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (0 < (π / 2) ↔ -(π / 2) < 0) |
16 | 12, 15 | mpbi 145 | . . . . 5 ⊢ -(π / 2) < 0 |
17 | 16 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → -(π / 2) < 0) |
18 | 3 | simp2bi 1015 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → 0 ≤ 𝐴) |
19 | 6, 7, 4, 17, 18 | ltletrd 8409 | . . 3 ⊢ (𝐴 ∈ (0[,]π) → -(π / 2) < 𝐴) |
20 | 2 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → π ∈ ℝ) |
21 | 3re 9022 | . . . . . 6 ⊢ 3 ∈ ℝ | |
22 | 21, 13 | remulcli 8000 | . . . . 5 ⊢ (3 · (π / 2)) ∈ ℝ |
23 | 22 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → (3 · (π / 2)) ∈ ℝ) |
24 | 3 | simp3bi 1016 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → 𝐴 ≤ π) |
25 | 2div2e1 9080 | . . . . . . . 8 ⊢ (2 / 2) = 1 | |
26 | 2lt3 9118 | . . . . . . . . 9 ⊢ 2 < 3 | |
27 | 2re 9018 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
28 | 2pos 9039 | . . . . . . . . . 10 ⊢ 0 < 2 | |
29 | 27, 21, 27, 28 | ltdiv1ii 8915 | . . . . . . . . 9 ⊢ (2 < 3 ↔ (2 / 2) < (3 / 2)) |
30 | 26, 29 | mpbi 145 | . . . . . . . 8 ⊢ (2 / 2) < (3 / 2) |
31 | 25, 30 | eqbrtrri 4041 | . . . . . . 7 ⊢ 1 < (3 / 2) |
32 | 21 | rehalfcli 9196 | . . . . . . . 8 ⊢ (3 / 2) ∈ ℝ |
33 | pipos 14661 | . . . . . . . 8 ⊢ 0 < π | |
34 | ltmulgt12 8851 | . . . . . . . 8 ⊢ ((π ∈ ℝ ∧ (3 / 2) ∈ ℝ ∧ 0 < π) → (1 < (3 / 2) ↔ π < ((3 / 2) · π))) | |
35 | 2, 32, 33, 34 | mp3an 1348 | . . . . . . 7 ⊢ (1 < (3 / 2) ↔ π < ((3 / 2) · π)) |
36 | 31, 35 | mpbi 145 | . . . . . 6 ⊢ π < ((3 / 2) · π) |
37 | 21 | recni 7998 | . . . . . . 7 ⊢ 3 ∈ ℂ |
38 | 2cn 9019 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
39 | 2ap0 9041 | . . . . . . . 8 ⊢ 2 # 0 | |
40 | 38, 39 | pm3.2i 272 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
41 | 2 | recni 7998 | . . . . . . 7 ⊢ π ∈ ℂ |
42 | div32ap 8678 | . . . . . . 7 ⊢ ((3 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ π ∈ ℂ) → ((3 / 2) · π) = (3 · (π / 2))) | |
43 | 37, 40, 41, 42 | mp3an 1348 | . . . . . 6 ⊢ ((3 / 2) · π) = (3 · (π / 2)) |
44 | 36, 43 | breqtri 4043 | . . . . 5 ⊢ π < (3 · (π / 2)) |
45 | 44 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → π < (3 · (π / 2))) |
46 | 4, 20, 23, 24, 45 | lelttrd 8111 | . . 3 ⊢ (𝐴 ∈ (0[,]π) → 𝐴 < (3 · (π / 2))) |
47 | neghalfpirx 14667 | . . . 4 ⊢ -(π / 2) ∈ ℝ* | |
48 | 22 | rexri 8044 | . . . 4 ⊢ (3 · (π / 2)) ∈ ℝ* |
49 | elioo2 9950 | . . . 4 ⊢ ((-(π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴 ∧ 𝐴 < (3 · (π / 2))))) | |
50 | 47, 48, 49 | mp2an 426 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴 ∧ 𝐴 < (3 · (π / 2)))) |
51 | 4, 19, 46, 50 | syl3anbrc 1183 | . 2 ⊢ (𝐴 ∈ (0[,]π) → 𝐴 ∈ (-(π / 2)(,)(3 · (π / 2)))) |
52 | coseq0q4123 14707 | . 2 ⊢ (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2))) | |
53 | 51, 52 | syl 14 | 1 ⊢ (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 ‘cfv 5235 (class class class)co 5895 ℂcc 7838 ℝcr 7839 0cc0 7840 1c1 7841 · cmul 7845 ℝ*cxr 8020 < clt 8021 ≤ cle 8022 -cneg 8158 # cap 8567 / cdiv 8658 2c2 8999 3c3 9000 ℝ+crp 9682 (,)cioo 9917 [,]cicc 9920 cosccos 11684 πcpi 11686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7931 ax-resscn 7932 ax-1cn 7933 ax-1re 7934 ax-icn 7935 ax-addcl 7936 ax-addrcl 7937 ax-mulcl 7938 ax-mulrcl 7939 ax-addcom 7940 ax-mulcom 7941 ax-addass 7942 ax-mulass 7943 ax-distr 7944 ax-i2m1 7945 ax-0lt1 7946 ax-1rid 7947 ax-0id 7948 ax-rnegex 7949 ax-precex 7950 ax-cnre 7951 ax-pre-ltirr 7952 ax-pre-ltwlin 7953 ax-pre-lttrn 7954 ax-pre-apti 7955 ax-pre-ltadd 7956 ax-pre-mulgt0 7957 ax-pre-mulext 7958 ax-arch 7959 ax-caucvg 7960 ax-pre-suploc 7961 ax-addf 7962 ax-mulf 7963 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-disj 3996 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-isom 5244 df-riota 5851 df-ov 5898 df-oprab 5899 df-mpo 5900 df-of 6105 df-1st 6164 df-2nd 6165 df-recs 6329 df-irdg 6394 df-frec 6415 df-1o 6440 df-oadd 6444 df-er 6558 df-map 6675 df-pm 6676 df-en 6766 df-dom 6767 df-fin 6768 df-sup 7012 df-inf 7013 df-pnf 8023 df-mnf 8024 df-xr 8025 df-ltxr 8026 df-le 8027 df-sub 8159 df-neg 8160 df-reap 8561 df-ap 8568 df-div 8659 df-inn 8949 df-2 9007 df-3 9008 df-4 9009 df-5 9010 df-6 9011 df-7 9012 df-8 9013 df-9 9014 df-n0 9206 df-z 9283 df-uz 9558 df-q 9649 df-rp 9683 df-xneg 9801 df-xadd 9802 df-ioo 9921 df-ioc 9922 df-ico 9923 df-icc 9924 df-fz 10038 df-fzo 10172 df-seqfrec 10476 df-exp 10550 df-fac 10737 df-bc 10759 df-ihash 10787 df-shft 10855 df-cj 10882 df-re 10883 df-im 10884 df-rsqrt 11038 df-abs 11039 df-clim 11318 df-sumdc 11393 df-ef 11687 df-sin 11689 df-cos 11690 df-pi 11692 df-rest 12743 df-topgen 12762 df-psmet 13853 df-xmet 13854 df-met 13855 df-bl 13856 df-mopn 13857 df-top 13950 df-topon 13963 df-bases 13995 df-ntr 14048 df-cn 14140 df-cnp 14141 df-tx 14205 df-cncf 14510 df-limced 14577 df-dvap 14578 |
This theorem is referenced by: coseq0negpitopi 14709 |
Copyright terms: Public domain | W3C validator |