ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coseq00topi GIF version

Theorem coseq00topi 15422
Description: Location of the zeroes of cosine in (0[,]π). (Contributed by David Moews, 28-Feb-2017.)
Assertion
Ref Expression
coseq00topi (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))

Proof of Theorem coseq00topi
StepHypRef Expression
1 0re 8107 . . . . 5 0 ∈ ℝ
2 pire 15373 . . . . 5 π ∈ ℝ
31, 2elicc2i 10096 . . . 4 (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
43simp1bi 1015 . . 3 (𝐴 ∈ (0[,]π) → 𝐴 ∈ ℝ)
5 neghalfpire 15380 . . . . 5 -(π / 2) ∈ ℝ
65a1i 9 . . . 4 (𝐴 ∈ (0[,]π) → -(π / 2) ∈ ℝ)
71a1i 9 . . . 4 (𝐴 ∈ (0[,]π) → 0 ∈ ℝ)
8 pirp 15376 . . . . . . . 8 π ∈ ℝ+
9 rphalfcl 9838 . . . . . . . 8 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
108, 9ax-mp 5 . . . . . . 7 (π / 2) ∈ ℝ+
11 rpgt0 9822 . . . . . . 7 ((π / 2) ∈ ℝ+ → 0 < (π / 2))
1210, 11ax-mp 5 . . . . . 6 0 < (π / 2)
13 halfpire 15379 . . . . . . 7 (π / 2) ∈ ℝ
14 lt0neg2 8577 . . . . . . 7 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
1513, 14ax-mp 5 . . . . . 6 (0 < (π / 2) ↔ -(π / 2) < 0)
1612, 15mpbi 145 . . . . 5 -(π / 2) < 0
1716a1i 9 . . . 4 (𝐴 ∈ (0[,]π) → -(π / 2) < 0)
183simp2bi 1016 . . . 4 (𝐴 ∈ (0[,]π) → 0 ≤ 𝐴)
196, 7, 4, 17, 18ltletrd 8531 . . 3 (𝐴 ∈ (0[,]π) → -(π / 2) < 𝐴)
202a1i 9 . . . 4 (𝐴 ∈ (0[,]π) → π ∈ ℝ)
21 3re 9145 . . . . . 6 3 ∈ ℝ
2221, 13remulcli 8121 . . . . 5 (3 · (π / 2)) ∈ ℝ
2322a1i 9 . . . 4 (𝐴 ∈ (0[,]π) → (3 · (π / 2)) ∈ ℝ)
243simp3bi 1017 . . . 4 (𝐴 ∈ (0[,]π) → 𝐴 ≤ π)
25 2div2e1 9204 . . . . . . . 8 (2 / 2) = 1
26 2lt3 9242 . . . . . . . . 9 2 < 3
27 2re 9141 . . . . . . . . . 10 2 ∈ ℝ
28 2pos 9162 . . . . . . . . . 10 0 < 2
2927, 21, 27, 28ltdiv1ii 9037 . . . . . . . . 9 (2 < 3 ↔ (2 / 2) < (3 / 2))
3026, 29mpbi 145 . . . . . . . 8 (2 / 2) < (3 / 2)
3125, 30eqbrtrri 4082 . . . . . . 7 1 < (3 / 2)
3221rehalfcli 9321 . . . . . . . 8 (3 / 2) ∈ ℝ
33 pipos 15375 . . . . . . . 8 0 < π
34 ltmulgt12 8973 . . . . . . . 8 ((π ∈ ℝ ∧ (3 / 2) ∈ ℝ ∧ 0 < π) → (1 < (3 / 2) ↔ π < ((3 / 2) · π)))
352, 32, 33, 34mp3an 1350 . . . . . . 7 (1 < (3 / 2) ↔ π < ((3 / 2) · π))
3631, 35mpbi 145 . . . . . 6 π < ((3 / 2) · π)
3721recni 8119 . . . . . . 7 3 ∈ ℂ
38 2cn 9142 . . . . . . . 8 2 ∈ ℂ
39 2ap0 9164 . . . . . . . 8 2 # 0
4038, 39pm3.2i 272 . . . . . . 7 (2 ∈ ℂ ∧ 2 # 0)
412recni 8119 . . . . . . 7 π ∈ ℂ
42 div32ap 8800 . . . . . . 7 ((3 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ π ∈ ℂ) → ((3 / 2) · π) = (3 · (π / 2)))
4337, 40, 41, 42mp3an 1350 . . . . . 6 ((3 / 2) · π) = (3 · (π / 2))
4436, 43breqtri 4084 . . . . 5 π < (3 · (π / 2))
4544a1i 9 . . . 4 (𝐴 ∈ (0[,]π) → π < (3 · (π / 2)))
464, 20, 23, 24, 45lelttrd 8232 . . 3 (𝐴 ∈ (0[,]π) → 𝐴 < (3 · (π / 2)))
47 neghalfpirx 15381 . . . 4 -(π / 2) ∈ ℝ*
4822rexri 8165 . . . 4 (3 · (π / 2)) ∈ ℝ*
49 elioo2 10078 . . . 4 ((-(π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (3 · (π / 2)))))
5047, 48, 49mp2an 426 . . 3 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (3 · (π / 2))))
514, 19, 46, 50syl3anbrc 1184 . 2 (𝐴 ∈ (0[,]π) → 𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))))
52 coseq0q4123 15421 . 2 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
5351, 52syl 14 1 (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2178   class class class wbr 4059  cfv 5290  (class class class)co 5967  cc 7958  cr 7959  0cc0 7960  1c1 7961   · cmul 7965  *cxr 8141   < clt 8142  cle 8143  -cneg 8279   # cap 8689   / cdiv 8780  2c2 9122  3c3 9123  +crp 9810  (,)cioo 10045  [,]cicc 10048  cosccos 12071  πcpi 12073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080  ax-pre-suploc 8081  ax-addf 8082  ax-mulf 8083
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-disj 4036  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-of 6181  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-map 6760  df-pm 6761  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-ioo 10049  df-ioc 10050  df-ico 10051  df-icc 10052  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-fac 10908  df-bc 10930  df-ihash 10958  df-shft 11241  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780  df-ef 12074  df-sin 12076  df-cos 12077  df-pi 12079  df-rest 13188  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-met 14422  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-ntr 14683  df-cn 14775  df-cnp 14776  df-tx 14840  df-cncf 15158  df-limced 15243  df-dvap 15244
This theorem is referenced by:  coseq0negpitopi  15423
  Copyright terms: Public domain W3C validator