![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > coseq00topi | GIF version |
Description: Location of the zeroes of cosine in (0[,]π). (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
coseq00topi | ⊢ (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 8021 | . . . . 5 ⊢ 0 ∈ ℝ | |
2 | pire 14962 | . . . . 5 ⊢ π ∈ ℝ | |
3 | 1, 2 | elicc2i 10008 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π)) |
4 | 3 | simp1bi 1014 | . . 3 ⊢ (𝐴 ∈ (0[,]π) → 𝐴 ∈ ℝ) |
5 | neghalfpire 14969 | . . . . 5 ⊢ -(π / 2) ∈ ℝ | |
6 | 5 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → -(π / 2) ∈ ℝ) |
7 | 1 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → 0 ∈ ℝ) |
8 | pirp 14965 | . . . . . . . 8 ⊢ π ∈ ℝ+ | |
9 | rphalfcl 9750 | . . . . . . . 8 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
10 | 8, 9 | ax-mp 5 | . . . . . . 7 ⊢ (π / 2) ∈ ℝ+ |
11 | rpgt0 9734 | . . . . . . 7 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ 0 < (π / 2) |
13 | halfpire 14968 | . . . . . . 7 ⊢ (π / 2) ∈ ℝ | |
14 | lt0neg2 8490 | . . . . . . 7 ⊢ ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0)) | |
15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (0 < (π / 2) ↔ -(π / 2) < 0) |
16 | 12, 15 | mpbi 145 | . . . . 5 ⊢ -(π / 2) < 0 |
17 | 16 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → -(π / 2) < 0) |
18 | 3 | simp2bi 1015 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → 0 ≤ 𝐴) |
19 | 6, 7, 4, 17, 18 | ltletrd 8444 | . . 3 ⊢ (𝐴 ∈ (0[,]π) → -(π / 2) < 𝐴) |
20 | 2 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → π ∈ ℝ) |
21 | 3re 9058 | . . . . . 6 ⊢ 3 ∈ ℝ | |
22 | 21, 13 | remulcli 8035 | . . . . 5 ⊢ (3 · (π / 2)) ∈ ℝ |
23 | 22 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → (3 · (π / 2)) ∈ ℝ) |
24 | 3 | simp3bi 1016 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → 𝐴 ≤ π) |
25 | 2div2e1 9117 | . . . . . . . 8 ⊢ (2 / 2) = 1 | |
26 | 2lt3 9155 | . . . . . . . . 9 ⊢ 2 < 3 | |
27 | 2re 9054 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
28 | 2pos 9075 | . . . . . . . . . 10 ⊢ 0 < 2 | |
29 | 27, 21, 27, 28 | ltdiv1ii 8950 | . . . . . . . . 9 ⊢ (2 < 3 ↔ (2 / 2) < (3 / 2)) |
30 | 26, 29 | mpbi 145 | . . . . . . . 8 ⊢ (2 / 2) < (3 / 2) |
31 | 25, 30 | eqbrtrri 4053 | . . . . . . 7 ⊢ 1 < (3 / 2) |
32 | 21 | rehalfcli 9234 | . . . . . . . 8 ⊢ (3 / 2) ∈ ℝ |
33 | pipos 14964 | . . . . . . . 8 ⊢ 0 < π | |
34 | ltmulgt12 8886 | . . . . . . . 8 ⊢ ((π ∈ ℝ ∧ (3 / 2) ∈ ℝ ∧ 0 < π) → (1 < (3 / 2) ↔ π < ((3 / 2) · π))) | |
35 | 2, 32, 33, 34 | mp3an 1348 | . . . . . . 7 ⊢ (1 < (3 / 2) ↔ π < ((3 / 2) · π)) |
36 | 31, 35 | mpbi 145 | . . . . . 6 ⊢ π < ((3 / 2) · π) |
37 | 21 | recni 8033 | . . . . . . 7 ⊢ 3 ∈ ℂ |
38 | 2cn 9055 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
39 | 2ap0 9077 | . . . . . . . 8 ⊢ 2 # 0 | |
40 | 38, 39 | pm3.2i 272 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
41 | 2 | recni 8033 | . . . . . . 7 ⊢ π ∈ ℂ |
42 | div32ap 8713 | . . . . . . 7 ⊢ ((3 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ π ∈ ℂ) → ((3 / 2) · π) = (3 · (π / 2))) | |
43 | 37, 40, 41, 42 | mp3an 1348 | . . . . . 6 ⊢ ((3 / 2) · π) = (3 · (π / 2)) |
44 | 36, 43 | breqtri 4055 | . . . . 5 ⊢ π < (3 · (π / 2)) |
45 | 44 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) → π < (3 · (π / 2))) |
46 | 4, 20, 23, 24, 45 | lelttrd 8146 | . . 3 ⊢ (𝐴 ∈ (0[,]π) → 𝐴 < (3 · (π / 2))) |
47 | neghalfpirx 14970 | . . . 4 ⊢ -(π / 2) ∈ ℝ* | |
48 | 22 | rexri 8079 | . . . 4 ⊢ (3 · (π / 2)) ∈ ℝ* |
49 | elioo2 9990 | . . . 4 ⊢ ((-(π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴 ∧ 𝐴 < (3 · (π / 2))))) | |
50 | 47, 48, 49 | mp2an 426 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴 ∧ 𝐴 < (3 · (π / 2)))) |
51 | 4, 19, 46, 50 | syl3anbrc 1183 | . 2 ⊢ (𝐴 ∈ (0[,]π) → 𝐴 ∈ (-(π / 2)(,)(3 · (π / 2)))) |
52 | coseq0q4123 15010 | . 2 ⊢ (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2))) | |
53 | 51, 52 | syl 14 | 1 ⊢ (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 ℝcr 7873 0cc0 7874 1c1 7875 · cmul 7879 ℝ*cxr 8055 < clt 8056 ≤ cle 8057 -cneg 8193 # cap 8602 / cdiv 8693 2c2 9035 3c3 9036 ℝ+crp 9722 (,)cioo 9957 [,]cicc 9960 cosccos 11791 πcpi 11793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 ax-pre-suploc 7995 ax-addf 7996 ax-mulf 7997 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-disj 4008 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-of 6132 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-map 6706 df-pm 6707 df-en 6797 df-dom 6798 df-fin 6799 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-xneg 9841 df-xadd 9842 df-ioo 9961 df-ioc 9962 df-ico 9963 df-icc 9964 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-fac 10800 df-bc 10822 df-ihash 10850 df-shft 10962 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-sumdc 11500 df-ef 11794 df-sin 11796 df-cos 11797 df-pi 11799 df-rest 12855 df-topgen 12874 df-psmet 14042 df-xmet 14043 df-met 14044 df-bl 14045 df-mopn 14046 df-top 14177 df-topon 14190 df-bases 14222 df-ntr 14275 df-cn 14367 df-cnp 14368 df-tx 14432 df-cncf 14750 df-limced 14835 df-dvap 14836 |
This theorem is referenced by: coseq0negpitopi 15012 |
Copyright terms: Public domain | W3C validator |