ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dju1p1e2 GIF version

Theorem dju1p1e2 7307
Description: Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
dju1p1e2 (1o ⊔ 1o) ≈ 2o

Proof of Theorem dju1p1e2
StepHypRef Expression
1 djuun 7171 . 2 ((inl “ 1o) ∪ (inr “ 1o)) = (1o ⊔ 1o)
2 djuin 7168 . . 3 ((inl “ 1o) ∩ (inr “ 1o)) = ∅
3 djulf1o 7162 . . . . . . . 8 inl:V–1-1-onto→({∅} × V)
4 f1of1 5523 . . . . . . . 8 (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V))
53, 4ax-mp 5 . . . . . . 7 inl:V–1-1→({∅} × V)
6 ssv 3215 . . . . . . 7 1o ⊆ V
7 f1ores 5539 . . . . . . 7 ((inl:V–1-1→({∅} × V) ∧ 1o ⊆ V) → (inl ↾ 1o):1o1-1-onto→(inl “ 1o))
85, 6, 7mp2an 426 . . . . . 6 (inl ↾ 1o):1o1-1-onto→(inl “ 1o)
9 1oex 6512 . . . . . . 7 1o ∈ V
109f1oen 6852 . . . . . 6 ((inl ↾ 1o):1o1-1-onto→(inl “ 1o) → 1o ≈ (inl “ 1o))
118, 10ax-mp 5 . . . . 5 1o ≈ (inl “ 1o)
1211ensymi 6876 . . . 4 (inl “ 1o) ≈ 1o
13 djurf1o 7163 . . . . . . . 8 inr:V–1-1-onto→({1o} × V)
14 f1of1 5523 . . . . . . . 8 (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V))
1513, 14ax-mp 5 . . . . . . 7 inr:V–1-1→({1o} × V)
16 f1ores 5539 . . . . . . 7 ((inr:V–1-1→({1o} × V) ∧ 1o ⊆ V) → (inr ↾ 1o):1o1-1-onto→(inr “ 1o))
1715, 6, 16mp2an 426 . . . . . 6 (inr ↾ 1o):1o1-1-onto→(inr “ 1o)
189f1oen 6852 . . . . . 6 ((inr ↾ 1o):1o1-1-onto→(inr “ 1o) → 1o ≈ (inr “ 1o))
1917, 18ax-mp 5 . . . . 5 1o ≈ (inr “ 1o)
2019ensymi 6876 . . . 4 (inr “ 1o) ≈ 1o
21 pm54.43 7300 . . . 4 (((inl “ 1o) ≈ 1o ∧ (inr “ 1o) ≈ 1o) → (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o))
2212, 20, 21mp2an 426 . . 3 (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o)
232, 22mpbi 145 . 2 ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o
241, 23eqbrtrri 4068 1 (1o ⊔ 1o) ≈ 2o
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  Vcvv 2772  cun 3164  cin 3165  wss 3166  c0 3460  {csn 3633   class class class wbr 4045   × cxp 4674  cres 4678  cima 4679  1-1wf1 5269  1-1-ontowf1o 5271  1oc1o 6497  2oc2o 6498  cen 6827  cdju 7141  inlcinl 7149  inrcinr 7150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-1st 6228  df-2nd 6229  df-1o 6504  df-2o 6505  df-er 6622  df-en 6830  df-dju 7142  df-inl 7151  df-inr 7152
This theorem is referenced by:  exmidfodomrlemr  7312  exmidfodomrlemrALT  7313
  Copyright terms: Public domain W3C validator