| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dju1p1e2 | GIF version | ||
| Description: Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.) |
| Ref | Expression |
|---|---|
| dju1p1e2 | ⊢ (1o ⊔ 1o) ≈ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuun 7171 | . 2 ⊢ ((inl “ 1o) ∪ (inr “ 1o)) = (1o ⊔ 1o) | |
| 2 | djuin 7168 | . . 3 ⊢ ((inl “ 1o) ∩ (inr “ 1o)) = ∅ | |
| 3 | djulf1o 7162 | . . . . . . . 8 ⊢ inl:V–1-1-onto→({∅} × V) | |
| 4 | f1of1 5523 | . . . . . . . 8 ⊢ (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V)) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ inl:V–1-1→({∅} × V) |
| 6 | ssv 3215 | . . . . . . 7 ⊢ 1o ⊆ V | |
| 7 | f1ores 5539 | . . . . . . 7 ⊢ ((inl:V–1-1→({∅} × V) ∧ 1o ⊆ V) → (inl ↾ 1o):1o–1-1-onto→(inl “ 1o)) | |
| 8 | 5, 6, 7 | mp2an 426 | . . . . . 6 ⊢ (inl ↾ 1o):1o–1-1-onto→(inl “ 1o) |
| 9 | 1oex 6512 | . . . . . . 7 ⊢ 1o ∈ V | |
| 10 | 9 | f1oen 6852 | . . . . . 6 ⊢ ((inl ↾ 1o):1o–1-1-onto→(inl “ 1o) → 1o ≈ (inl “ 1o)) |
| 11 | 8, 10 | ax-mp 5 | . . . . 5 ⊢ 1o ≈ (inl “ 1o) |
| 12 | 11 | ensymi 6876 | . . . 4 ⊢ (inl “ 1o) ≈ 1o |
| 13 | djurf1o 7163 | . . . . . . . 8 ⊢ inr:V–1-1-onto→({1o} × V) | |
| 14 | f1of1 5523 | . . . . . . . 8 ⊢ (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V)) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ inr:V–1-1→({1o} × V) |
| 16 | f1ores 5539 | . . . . . . 7 ⊢ ((inr:V–1-1→({1o} × V) ∧ 1o ⊆ V) → (inr ↾ 1o):1o–1-1-onto→(inr “ 1o)) | |
| 17 | 15, 6, 16 | mp2an 426 | . . . . . 6 ⊢ (inr ↾ 1o):1o–1-1-onto→(inr “ 1o) |
| 18 | 9 | f1oen 6852 | . . . . . 6 ⊢ ((inr ↾ 1o):1o–1-1-onto→(inr “ 1o) → 1o ≈ (inr “ 1o)) |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ 1o ≈ (inr “ 1o) |
| 20 | 19 | ensymi 6876 | . . . 4 ⊢ (inr “ 1o) ≈ 1o |
| 21 | pm54.43 7300 | . . . 4 ⊢ (((inl “ 1o) ≈ 1o ∧ (inr “ 1o) ≈ 1o) → (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o)) | |
| 22 | 12, 20, 21 | mp2an 426 | . . 3 ⊢ (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o) |
| 23 | 2, 22 | mpbi 145 | . 2 ⊢ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o |
| 24 | 1, 23 | eqbrtrri 4068 | 1 ⊢ (1o ⊔ 1o) ≈ 2o |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 Vcvv 2772 ∪ cun 3164 ∩ cin 3165 ⊆ wss 3166 ∅c0 3460 {csn 3633 class class class wbr 4045 × cxp 4674 ↾ cres 4678 “ cima 4679 –1-1→wf1 5269 –1-1-onto→wf1o 5271 1oc1o 6497 2oc2o 6498 ≈ cen 6827 ⊔ cdju 7141 inlcinl 7149 inrcinr 7150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-1st 6228 df-2nd 6229 df-1o 6504 df-2o 6505 df-er 6622 df-en 6830 df-dju 7142 df-inl 7151 df-inr 7152 |
| This theorem is referenced by: exmidfodomrlemr 7312 exmidfodomrlemrALT 7313 |
| Copyright terms: Public domain | W3C validator |