ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dju1p1e2 GIF version

Theorem dju1p1e2 7375
Description: Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
dju1p1e2 (1o ⊔ 1o) ≈ 2o

Proof of Theorem dju1p1e2
StepHypRef Expression
1 djuun 7234 . 2 ((inl “ 1o) ∪ (inr “ 1o)) = (1o ⊔ 1o)
2 djuin 7231 . . 3 ((inl “ 1o) ∩ (inr “ 1o)) = ∅
3 djulf1o 7225 . . . . . . . 8 inl:V–1-1-onto→({∅} × V)
4 f1of1 5571 . . . . . . . 8 (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V))
53, 4ax-mp 5 . . . . . . 7 inl:V–1-1→({∅} × V)
6 ssv 3246 . . . . . . 7 1o ⊆ V
7 f1ores 5587 . . . . . . 7 ((inl:V–1-1→({∅} × V) ∧ 1o ⊆ V) → (inl ↾ 1o):1o1-1-onto→(inl “ 1o))
85, 6, 7mp2an 426 . . . . . 6 (inl ↾ 1o):1o1-1-onto→(inl “ 1o)
9 1oex 6570 . . . . . . 7 1o ∈ V
109f1oen 6910 . . . . . 6 ((inl ↾ 1o):1o1-1-onto→(inl “ 1o) → 1o ≈ (inl “ 1o))
118, 10ax-mp 5 . . . . 5 1o ≈ (inl “ 1o)
1211ensymi 6934 . . . 4 (inl “ 1o) ≈ 1o
13 djurf1o 7226 . . . . . . . 8 inr:V–1-1-onto→({1o} × V)
14 f1of1 5571 . . . . . . . 8 (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V))
1513, 14ax-mp 5 . . . . . . 7 inr:V–1-1→({1o} × V)
16 f1ores 5587 . . . . . . 7 ((inr:V–1-1→({1o} × V) ∧ 1o ⊆ V) → (inr ↾ 1o):1o1-1-onto→(inr “ 1o))
1715, 6, 16mp2an 426 . . . . . 6 (inr ↾ 1o):1o1-1-onto→(inr “ 1o)
189f1oen 6910 . . . . . 6 ((inr ↾ 1o):1o1-1-onto→(inr “ 1o) → 1o ≈ (inr “ 1o))
1917, 18ax-mp 5 . . . . 5 1o ≈ (inr “ 1o)
2019ensymi 6934 . . . 4 (inr “ 1o) ≈ 1o
21 pm54.43 7363 . . . 4 (((inl “ 1o) ≈ 1o ∧ (inr “ 1o) ≈ 1o) → (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o))
2212, 20, 21mp2an 426 . . 3 (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o)
232, 22mpbi 145 . 2 ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o
241, 23eqbrtrri 4106 1 (1o ⊔ 1o) ≈ 2o
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  Vcvv 2799  cun 3195  cin 3196  wss 3197  c0 3491  {csn 3666   class class class wbr 4083   × cxp 4717  cres 4721  cima 4722  1-1wf1 5315  1-1-ontowf1o 5317  1oc1o 6555  2oc2o 6556  cen 6885  cdju 7204  inlcinl 7212  inrcinr 7213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6286  df-2nd 6287  df-1o 6562  df-2o 6563  df-er 6680  df-en 6888  df-dju 7205  df-inl 7214  df-inr 7215
This theorem is referenced by:  exmidfodomrlemr  7380  exmidfodomrlemrALT  7381
  Copyright terms: Public domain W3C validator