Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dju1p1e2 | GIF version |
Description: Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.) |
Ref | Expression |
---|---|
dju1p1e2 | ⊢ (1o ⊔ 1o) ≈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuun 7032 | . 2 ⊢ ((inl “ 1o) ∪ (inr “ 1o)) = (1o ⊔ 1o) | |
2 | djuin 7029 | . . 3 ⊢ ((inl “ 1o) ∩ (inr “ 1o)) = ∅ | |
3 | djulf1o 7023 | . . . . . . . 8 ⊢ inl:V–1-1-onto→({∅} × V) | |
4 | f1of1 5431 | . . . . . . . 8 ⊢ (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V)) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ inl:V–1-1→({∅} × V) |
6 | ssv 3164 | . . . . . . 7 ⊢ 1o ⊆ V | |
7 | f1ores 5447 | . . . . . . 7 ⊢ ((inl:V–1-1→({∅} × V) ∧ 1o ⊆ V) → (inl ↾ 1o):1o–1-1-onto→(inl “ 1o)) | |
8 | 5, 6, 7 | mp2an 423 | . . . . . 6 ⊢ (inl ↾ 1o):1o–1-1-onto→(inl “ 1o) |
9 | 1oex 6392 | . . . . . . 7 ⊢ 1o ∈ V | |
10 | 9 | f1oen 6725 | . . . . . 6 ⊢ ((inl ↾ 1o):1o–1-1-onto→(inl “ 1o) → 1o ≈ (inl “ 1o)) |
11 | 8, 10 | ax-mp 5 | . . . . 5 ⊢ 1o ≈ (inl “ 1o) |
12 | 11 | ensymi 6748 | . . . 4 ⊢ (inl “ 1o) ≈ 1o |
13 | djurf1o 7024 | . . . . . . . 8 ⊢ inr:V–1-1-onto→({1o} × V) | |
14 | f1of1 5431 | . . . . . . . 8 ⊢ (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V)) | |
15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ inr:V–1-1→({1o} × V) |
16 | f1ores 5447 | . . . . . . 7 ⊢ ((inr:V–1-1→({1o} × V) ∧ 1o ⊆ V) → (inr ↾ 1o):1o–1-1-onto→(inr “ 1o)) | |
17 | 15, 6, 16 | mp2an 423 | . . . . . 6 ⊢ (inr ↾ 1o):1o–1-1-onto→(inr “ 1o) |
18 | 9 | f1oen 6725 | . . . . . 6 ⊢ ((inr ↾ 1o):1o–1-1-onto→(inr “ 1o) → 1o ≈ (inr “ 1o)) |
19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ 1o ≈ (inr “ 1o) |
20 | 19 | ensymi 6748 | . . . 4 ⊢ (inr “ 1o) ≈ 1o |
21 | pm54.43 7146 | . . . 4 ⊢ (((inl “ 1o) ≈ 1o ∧ (inr “ 1o) ≈ 1o) → (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o)) | |
22 | 12, 20, 21 | mp2an 423 | . . 3 ⊢ (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o) |
23 | 2, 22 | mpbi 144 | . 2 ⊢ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o |
24 | 1, 23 | eqbrtrri 4005 | 1 ⊢ (1o ⊔ 1o) ≈ 2o |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 Vcvv 2726 ∪ cun 3114 ∩ cin 3115 ⊆ wss 3116 ∅c0 3409 {csn 3576 class class class wbr 3982 × cxp 4602 ↾ cres 4606 “ cima 4607 –1-1→wf1 5185 –1-1-onto→wf1o 5187 1oc1o 6377 2oc2o 6378 ≈ cen 6704 ⊔ cdju 7002 inlcinl 7010 inrcinr 7011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-2o 6385 df-er 6501 df-en 6707 df-dju 7003 df-inl 7012 df-inr 7013 |
This theorem is referenced by: exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 |
Copyright terms: Public domain | W3C validator |