ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dju1p1e2 GIF version

Theorem dju1p1e2 7174
Description: Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
dju1p1e2 (1o ⊔ 1o) ≈ 2o

Proof of Theorem dju1p1e2
StepHypRef Expression
1 djuun 7044 . 2 ((inl “ 1o) ∪ (inr “ 1o)) = (1o ⊔ 1o)
2 djuin 7041 . . 3 ((inl “ 1o) ∩ (inr “ 1o)) = ∅
3 djulf1o 7035 . . . . . . . 8 inl:V–1-1-onto→({∅} × V)
4 f1of1 5441 . . . . . . . 8 (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V))
53, 4ax-mp 5 . . . . . . 7 inl:V–1-1→({∅} × V)
6 ssv 3169 . . . . . . 7 1o ⊆ V
7 f1ores 5457 . . . . . . 7 ((inl:V–1-1→({∅} × V) ∧ 1o ⊆ V) → (inl ↾ 1o):1o1-1-onto→(inl “ 1o))
85, 6, 7mp2an 424 . . . . . 6 (inl ↾ 1o):1o1-1-onto→(inl “ 1o)
9 1oex 6403 . . . . . . 7 1o ∈ V
109f1oen 6737 . . . . . 6 ((inl ↾ 1o):1o1-1-onto→(inl “ 1o) → 1o ≈ (inl “ 1o))
118, 10ax-mp 5 . . . . 5 1o ≈ (inl “ 1o)
1211ensymi 6760 . . . 4 (inl “ 1o) ≈ 1o
13 djurf1o 7036 . . . . . . . 8 inr:V–1-1-onto→({1o} × V)
14 f1of1 5441 . . . . . . . 8 (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V))
1513, 14ax-mp 5 . . . . . . 7 inr:V–1-1→({1o} × V)
16 f1ores 5457 . . . . . . 7 ((inr:V–1-1→({1o} × V) ∧ 1o ⊆ V) → (inr ↾ 1o):1o1-1-onto→(inr “ 1o))
1715, 6, 16mp2an 424 . . . . . 6 (inr ↾ 1o):1o1-1-onto→(inr “ 1o)
189f1oen 6737 . . . . . 6 ((inr ↾ 1o):1o1-1-onto→(inr “ 1o) → 1o ≈ (inr “ 1o))
1917, 18ax-mp 5 . . . . 5 1o ≈ (inr “ 1o)
2019ensymi 6760 . . . 4 (inr “ 1o) ≈ 1o
21 pm54.43 7167 . . . 4 (((inl “ 1o) ≈ 1o ∧ (inr “ 1o) ≈ 1o) → (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o))
2212, 20, 21mp2an 424 . . 3 (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o)
232, 22mpbi 144 . 2 ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o
241, 23eqbrtrri 4012 1 (1o ⊔ 1o) ≈ 2o
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1348  Vcvv 2730  cun 3119  cin 3120  wss 3121  c0 3414  {csn 3583   class class class wbr 3989   × cxp 4609  cres 4613  cima 4614  1-1wf1 5195  1-1-ontowf1o 5197  1oc1o 6388  2oc2o 6389  cen 6716  cdju 7014  inlcinl 7022  inrcinr 7023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-dju 7015  df-inl 7024  df-inr 7025
This theorem is referenced by:  exmidfodomrlemr  7179  exmidfodomrlemrALT  7180
  Copyright terms: Public domain W3C validator