| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dju1p1e2 | GIF version | ||
| Description: Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.) |
| Ref | Expression |
|---|---|
| dju1p1e2 | ⊢ (1o ⊔ 1o) ≈ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuun 7142 | . 2 ⊢ ((inl “ 1o) ∪ (inr “ 1o)) = (1o ⊔ 1o) | |
| 2 | djuin 7139 | . . 3 ⊢ ((inl “ 1o) ∩ (inr “ 1o)) = ∅ | |
| 3 | djulf1o 7133 | . . . . . . . 8 ⊢ inl:V–1-1-onto→({∅} × V) | |
| 4 | f1of1 5506 | . . . . . . . 8 ⊢ (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V)) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ inl:V–1-1→({∅} × V) |
| 6 | ssv 3206 | . . . . . . 7 ⊢ 1o ⊆ V | |
| 7 | f1ores 5522 | . . . . . . 7 ⊢ ((inl:V–1-1→({∅} × V) ∧ 1o ⊆ V) → (inl ↾ 1o):1o–1-1-onto→(inl “ 1o)) | |
| 8 | 5, 6, 7 | mp2an 426 | . . . . . 6 ⊢ (inl ↾ 1o):1o–1-1-onto→(inl “ 1o) |
| 9 | 1oex 6491 | . . . . . . 7 ⊢ 1o ∈ V | |
| 10 | 9 | f1oen 6827 | . . . . . 6 ⊢ ((inl ↾ 1o):1o–1-1-onto→(inl “ 1o) → 1o ≈ (inl “ 1o)) |
| 11 | 8, 10 | ax-mp 5 | . . . . 5 ⊢ 1o ≈ (inl “ 1o) |
| 12 | 11 | ensymi 6850 | . . . 4 ⊢ (inl “ 1o) ≈ 1o |
| 13 | djurf1o 7134 | . . . . . . . 8 ⊢ inr:V–1-1-onto→({1o} × V) | |
| 14 | f1of1 5506 | . . . . . . . 8 ⊢ (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V)) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ inr:V–1-1→({1o} × V) |
| 16 | f1ores 5522 | . . . . . . 7 ⊢ ((inr:V–1-1→({1o} × V) ∧ 1o ⊆ V) → (inr ↾ 1o):1o–1-1-onto→(inr “ 1o)) | |
| 17 | 15, 6, 16 | mp2an 426 | . . . . . 6 ⊢ (inr ↾ 1o):1o–1-1-onto→(inr “ 1o) |
| 18 | 9 | f1oen 6827 | . . . . . 6 ⊢ ((inr ↾ 1o):1o–1-1-onto→(inr “ 1o) → 1o ≈ (inr “ 1o)) |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ 1o ≈ (inr “ 1o) |
| 20 | 19 | ensymi 6850 | . . . 4 ⊢ (inr “ 1o) ≈ 1o |
| 21 | pm54.43 7269 | . . . 4 ⊢ (((inl “ 1o) ≈ 1o ∧ (inr “ 1o) ≈ 1o) → (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o)) | |
| 22 | 12, 20, 21 | mp2an 426 | . . 3 ⊢ (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o) |
| 23 | 2, 22 | mpbi 145 | . 2 ⊢ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o |
| 24 | 1, 23 | eqbrtrri 4057 | 1 ⊢ (1o ⊔ 1o) ≈ 2o |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 Vcvv 2763 ∪ cun 3155 ∩ cin 3156 ⊆ wss 3157 ∅c0 3451 {csn 3623 class class class wbr 4034 × cxp 4662 ↾ cres 4666 “ cima 4667 –1-1→wf1 5256 –1-1-onto→wf1o 5258 1oc1o 6476 2oc2o 6477 ≈ cen 6806 ⊔ cdju 7112 inlcinl 7120 inrcinr 7121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1st 6207 df-2nd 6208 df-1o 6483 df-2o 6484 df-er 6601 df-en 6809 df-dju 7113 df-inl 7122 df-inr 7123 |
| This theorem is referenced by: exmidfodomrlemr 7281 exmidfodomrlemrALT 7282 |
| Copyright terms: Public domain | W3C validator |