| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dju1p1e2 | GIF version | ||
| Description: Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.) |
| Ref | Expression |
|---|---|
| dju1p1e2 | ⊢ (1o ⊔ 1o) ≈ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuun 7195 | . 2 ⊢ ((inl “ 1o) ∪ (inr “ 1o)) = (1o ⊔ 1o) | |
| 2 | djuin 7192 | . . 3 ⊢ ((inl “ 1o) ∩ (inr “ 1o)) = ∅ | |
| 3 | djulf1o 7186 | . . . . . . . 8 ⊢ inl:V–1-1-onto→({∅} × V) | |
| 4 | f1of1 5543 | . . . . . . . 8 ⊢ (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V)) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ inl:V–1-1→({∅} × V) |
| 6 | ssv 3223 | . . . . . . 7 ⊢ 1o ⊆ V | |
| 7 | f1ores 5559 | . . . . . . 7 ⊢ ((inl:V–1-1→({∅} × V) ∧ 1o ⊆ V) → (inl ↾ 1o):1o–1-1-onto→(inl “ 1o)) | |
| 8 | 5, 6, 7 | mp2an 426 | . . . . . 6 ⊢ (inl ↾ 1o):1o–1-1-onto→(inl “ 1o) |
| 9 | 1oex 6533 | . . . . . . 7 ⊢ 1o ∈ V | |
| 10 | 9 | f1oen 6873 | . . . . . 6 ⊢ ((inl ↾ 1o):1o–1-1-onto→(inl “ 1o) → 1o ≈ (inl “ 1o)) |
| 11 | 8, 10 | ax-mp 5 | . . . . 5 ⊢ 1o ≈ (inl “ 1o) |
| 12 | 11 | ensymi 6897 | . . . 4 ⊢ (inl “ 1o) ≈ 1o |
| 13 | djurf1o 7187 | . . . . . . . 8 ⊢ inr:V–1-1-onto→({1o} × V) | |
| 14 | f1of1 5543 | . . . . . . . 8 ⊢ (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V)) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ inr:V–1-1→({1o} × V) |
| 16 | f1ores 5559 | . . . . . . 7 ⊢ ((inr:V–1-1→({1o} × V) ∧ 1o ⊆ V) → (inr ↾ 1o):1o–1-1-onto→(inr “ 1o)) | |
| 17 | 15, 6, 16 | mp2an 426 | . . . . . 6 ⊢ (inr ↾ 1o):1o–1-1-onto→(inr “ 1o) |
| 18 | 9 | f1oen 6873 | . . . . . 6 ⊢ ((inr ↾ 1o):1o–1-1-onto→(inr “ 1o) → 1o ≈ (inr “ 1o)) |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ 1o ≈ (inr “ 1o) |
| 20 | 19 | ensymi 6897 | . . . 4 ⊢ (inr “ 1o) ≈ 1o |
| 21 | pm54.43 7324 | . . . 4 ⊢ (((inl “ 1o) ≈ 1o ∧ (inr “ 1o) ≈ 1o) → (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o)) | |
| 22 | 12, 20, 21 | mp2an 426 | . . 3 ⊢ (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o) |
| 23 | 2, 22 | mpbi 145 | . 2 ⊢ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o |
| 24 | 1, 23 | eqbrtrri 4082 | 1 ⊢ (1o ⊔ 1o) ≈ 2o |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 Vcvv 2776 ∪ cun 3172 ∩ cin 3173 ⊆ wss 3174 ∅c0 3468 {csn 3643 class class class wbr 4059 × cxp 4691 ↾ cres 4695 “ cima 4696 –1-1→wf1 5287 –1-1-onto→wf1o 5289 1oc1o 6518 2oc2o 6519 ≈ cen 6848 ⊔ cdju 7165 inlcinl 7173 inrcinr 7174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1st 6249 df-2nd 6250 df-1o 6525 df-2o 6526 df-er 6643 df-en 6851 df-dju 7166 df-inl 7175 df-inr 7176 |
| This theorem is referenced by: exmidfodomrlemr 7341 exmidfodomrlemrALT 7342 |
| Copyright terms: Public domain | W3C validator |