![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dju1p1e2 | GIF version |
Description: Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.) |
Ref | Expression |
---|---|
dju1p1e2 | ⊢ (1o ⊔ 1o) ≈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuun 6904 | . 2 ⊢ ((inl “ 1o) ∪ (inr “ 1o)) = (1o ⊔ 1o) | |
2 | djuin 6901 | . . 3 ⊢ ((inl “ 1o) ∩ (inr “ 1o)) = ∅ | |
3 | djulf1o 6895 | . . . . . . . 8 ⊢ inl:V–1-1-onto→({∅} × V) | |
4 | f1of1 5322 | . . . . . . . 8 ⊢ (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V)) | |
5 | 3, 4 | ax-mp 7 | . . . . . . 7 ⊢ inl:V–1-1→({∅} × V) |
6 | ssv 3085 | . . . . . . 7 ⊢ 1o ⊆ V | |
7 | f1ores 5338 | . . . . . . 7 ⊢ ((inl:V–1-1→({∅} × V) ∧ 1o ⊆ V) → (inl ↾ 1o):1o–1-1-onto→(inl “ 1o)) | |
8 | 5, 6, 7 | mp2an 420 | . . . . . 6 ⊢ (inl ↾ 1o):1o–1-1-onto→(inl “ 1o) |
9 | 1oex 6275 | . . . . . . 7 ⊢ 1o ∈ V | |
10 | 9 | f1oen 6607 | . . . . . 6 ⊢ ((inl ↾ 1o):1o–1-1-onto→(inl “ 1o) → 1o ≈ (inl “ 1o)) |
11 | 8, 10 | ax-mp 7 | . . . . 5 ⊢ 1o ≈ (inl “ 1o) |
12 | 11 | ensymi 6630 | . . . 4 ⊢ (inl “ 1o) ≈ 1o |
13 | djurf1o 6896 | . . . . . . . 8 ⊢ inr:V–1-1-onto→({1o} × V) | |
14 | f1of1 5322 | . . . . . . . 8 ⊢ (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V)) | |
15 | 13, 14 | ax-mp 7 | . . . . . . 7 ⊢ inr:V–1-1→({1o} × V) |
16 | f1ores 5338 | . . . . . . 7 ⊢ ((inr:V–1-1→({1o} × V) ∧ 1o ⊆ V) → (inr ↾ 1o):1o–1-1-onto→(inr “ 1o)) | |
17 | 15, 6, 16 | mp2an 420 | . . . . . 6 ⊢ (inr ↾ 1o):1o–1-1-onto→(inr “ 1o) |
18 | 9 | f1oen 6607 | . . . . . 6 ⊢ ((inr ↾ 1o):1o–1-1-onto→(inr “ 1o) → 1o ≈ (inr “ 1o)) |
19 | 17, 18 | ax-mp 7 | . . . . 5 ⊢ 1o ≈ (inr “ 1o) |
20 | 19 | ensymi 6630 | . . . 4 ⊢ (inr “ 1o) ≈ 1o |
21 | pm54.43 6996 | . . . 4 ⊢ (((inl “ 1o) ≈ 1o ∧ (inr “ 1o) ≈ 1o) → (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o)) | |
22 | 12, 20, 21 | mp2an 420 | . . 3 ⊢ (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o) |
23 | 2, 22 | mpbi 144 | . 2 ⊢ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o |
24 | 1, 23 | eqbrtrri 3916 | 1 ⊢ (1o ⊔ 1o) ≈ 2o |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1314 Vcvv 2657 ∪ cun 3035 ∩ cin 3036 ⊆ wss 3037 ∅c0 3329 {csn 3493 class class class wbr 3895 × cxp 4497 ↾ cres 4501 “ cima 4502 –1-1→wf1 5078 –1-1-onto→wf1o 5080 1oc1o 6260 2oc2o 6261 ≈ cen 6586 ⊔ cdju 6874 inlcinl 6882 inrcinr 6883 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-id 4175 df-iord 4248 df-on 4250 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-1st 5992 df-2nd 5993 df-1o 6267 df-2o 6268 df-er 6383 df-en 6589 df-dju 6875 df-inl 6884 df-inr 6885 |
This theorem is referenced by: exmidfodomrlemr 7006 exmidfodomrlemrALT 7007 |
Copyright terms: Public domain | W3C validator |