![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dju1p1e2 | GIF version |
Description: Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.) |
Ref | Expression |
---|---|
dju1p1e2 | ⊢ (1o ⊔ 1o) ≈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuun 7068 | . 2 ⊢ ((inl “ 1o) ∪ (inr “ 1o)) = (1o ⊔ 1o) | |
2 | djuin 7065 | . . 3 ⊢ ((inl “ 1o) ∩ (inr “ 1o)) = ∅ | |
3 | djulf1o 7059 | . . . . . . . 8 ⊢ inl:V–1-1-onto→({∅} × V) | |
4 | f1of1 5462 | . . . . . . . 8 ⊢ (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V)) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ inl:V–1-1→({∅} × V) |
6 | ssv 3179 | . . . . . . 7 ⊢ 1o ⊆ V | |
7 | f1ores 5478 | . . . . . . 7 ⊢ ((inl:V–1-1→({∅} × V) ∧ 1o ⊆ V) → (inl ↾ 1o):1o–1-1-onto→(inl “ 1o)) | |
8 | 5, 6, 7 | mp2an 426 | . . . . . 6 ⊢ (inl ↾ 1o):1o–1-1-onto→(inl “ 1o) |
9 | 1oex 6427 | . . . . . . 7 ⊢ 1o ∈ V | |
10 | 9 | f1oen 6761 | . . . . . 6 ⊢ ((inl ↾ 1o):1o–1-1-onto→(inl “ 1o) → 1o ≈ (inl “ 1o)) |
11 | 8, 10 | ax-mp 5 | . . . . 5 ⊢ 1o ≈ (inl “ 1o) |
12 | 11 | ensymi 6784 | . . . 4 ⊢ (inl “ 1o) ≈ 1o |
13 | djurf1o 7060 | . . . . . . . 8 ⊢ inr:V–1-1-onto→({1o} × V) | |
14 | f1of1 5462 | . . . . . . . 8 ⊢ (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V)) | |
15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ inr:V–1-1→({1o} × V) |
16 | f1ores 5478 | . . . . . . 7 ⊢ ((inr:V–1-1→({1o} × V) ∧ 1o ⊆ V) → (inr ↾ 1o):1o–1-1-onto→(inr “ 1o)) | |
17 | 15, 6, 16 | mp2an 426 | . . . . . 6 ⊢ (inr ↾ 1o):1o–1-1-onto→(inr “ 1o) |
18 | 9 | f1oen 6761 | . . . . . 6 ⊢ ((inr ↾ 1o):1o–1-1-onto→(inr “ 1o) → 1o ≈ (inr “ 1o)) |
19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ 1o ≈ (inr “ 1o) |
20 | 19 | ensymi 6784 | . . . 4 ⊢ (inr “ 1o) ≈ 1o |
21 | pm54.43 7191 | . . . 4 ⊢ (((inl “ 1o) ≈ 1o ∧ (inr “ 1o) ≈ 1o) → (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o)) | |
22 | 12, 20, 21 | mp2an 426 | . . 3 ⊢ (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o) |
23 | 2, 22 | mpbi 145 | . 2 ⊢ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o |
24 | 1, 23 | eqbrtrri 4028 | 1 ⊢ (1o ⊔ 1o) ≈ 2o |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 Vcvv 2739 ∪ cun 3129 ∩ cin 3130 ⊆ wss 3131 ∅c0 3424 {csn 3594 class class class wbr 4005 × cxp 4626 ↾ cres 4630 “ cima 4631 –1-1→wf1 5215 –1-1-onto→wf1o 5217 1oc1o 6412 2oc2o 6413 ≈ cen 6740 ⊔ cdju 7038 inlcinl 7046 inrcinr 7047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-1st 6143 df-2nd 6144 df-1o 6419 df-2o 6420 df-er 6537 df-en 6743 df-dju 7039 df-inl 7048 df-inr 7049 |
This theorem is referenced by: exmidfodomrlemr 7203 exmidfodomrlemrALT 7204 |
Copyright terms: Public domain | W3C validator |