Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dju1p1e2 | GIF version |
Description: Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.) |
Ref | Expression |
---|---|
dju1p1e2 | ⊢ (1o ⊔ 1o) ≈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuun 7044 | . 2 ⊢ ((inl “ 1o) ∪ (inr “ 1o)) = (1o ⊔ 1o) | |
2 | djuin 7041 | . . 3 ⊢ ((inl “ 1o) ∩ (inr “ 1o)) = ∅ | |
3 | djulf1o 7035 | . . . . . . . 8 ⊢ inl:V–1-1-onto→({∅} × V) | |
4 | f1of1 5441 | . . . . . . . 8 ⊢ (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V)) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ inl:V–1-1→({∅} × V) |
6 | ssv 3169 | . . . . . . 7 ⊢ 1o ⊆ V | |
7 | f1ores 5457 | . . . . . . 7 ⊢ ((inl:V–1-1→({∅} × V) ∧ 1o ⊆ V) → (inl ↾ 1o):1o–1-1-onto→(inl “ 1o)) | |
8 | 5, 6, 7 | mp2an 424 | . . . . . 6 ⊢ (inl ↾ 1o):1o–1-1-onto→(inl “ 1o) |
9 | 1oex 6403 | . . . . . . 7 ⊢ 1o ∈ V | |
10 | 9 | f1oen 6737 | . . . . . 6 ⊢ ((inl ↾ 1o):1o–1-1-onto→(inl “ 1o) → 1o ≈ (inl “ 1o)) |
11 | 8, 10 | ax-mp 5 | . . . . 5 ⊢ 1o ≈ (inl “ 1o) |
12 | 11 | ensymi 6760 | . . . 4 ⊢ (inl “ 1o) ≈ 1o |
13 | djurf1o 7036 | . . . . . . . 8 ⊢ inr:V–1-1-onto→({1o} × V) | |
14 | f1of1 5441 | . . . . . . . 8 ⊢ (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V)) | |
15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ inr:V–1-1→({1o} × V) |
16 | f1ores 5457 | . . . . . . 7 ⊢ ((inr:V–1-1→({1o} × V) ∧ 1o ⊆ V) → (inr ↾ 1o):1o–1-1-onto→(inr “ 1o)) | |
17 | 15, 6, 16 | mp2an 424 | . . . . . 6 ⊢ (inr ↾ 1o):1o–1-1-onto→(inr “ 1o) |
18 | 9 | f1oen 6737 | . . . . . 6 ⊢ ((inr ↾ 1o):1o–1-1-onto→(inr “ 1o) → 1o ≈ (inr “ 1o)) |
19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ 1o ≈ (inr “ 1o) |
20 | 19 | ensymi 6760 | . . . 4 ⊢ (inr “ 1o) ≈ 1o |
21 | pm54.43 7167 | . . . 4 ⊢ (((inl “ 1o) ≈ 1o ∧ (inr “ 1o) ≈ 1o) → (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o)) | |
22 | 12, 20, 21 | mp2an 424 | . . 3 ⊢ (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o) |
23 | 2, 22 | mpbi 144 | . 2 ⊢ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o |
24 | 1, 23 | eqbrtrri 4012 | 1 ⊢ (1o ⊔ 1o) ≈ 2o |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 Vcvv 2730 ∪ cun 3119 ∩ cin 3120 ⊆ wss 3121 ∅c0 3414 {csn 3583 class class class wbr 3989 × cxp 4609 ↾ cres 4613 “ cima 4614 –1-1→wf1 5195 –1-1-onto→wf1o 5197 1oc1o 6388 2oc2o 6389 ≈ cen 6716 ⊔ cdju 7014 inlcinl 7022 inrcinr 7023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-2o 6396 df-er 6513 df-en 6719 df-dju 7015 df-inl 7024 df-inr 7025 |
This theorem is referenced by: exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 |
Copyright terms: Public domain | W3C validator |