ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dju1p1e2 GIF version

Theorem dju1p1e2 7021
Description: Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
dju1p1e2 (1o ⊔ 1o) ≈ 2o

Proof of Theorem dju1p1e2
StepHypRef Expression
1 djuun 6920 . 2 ((inl “ 1o) ∪ (inr “ 1o)) = (1o ⊔ 1o)
2 djuin 6917 . . 3 ((inl “ 1o) ∩ (inr “ 1o)) = ∅
3 djulf1o 6911 . . . . . . . 8 inl:V–1-1-onto→({∅} × V)
4 f1of1 5334 . . . . . . . 8 (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V))
53, 4ax-mp 5 . . . . . . 7 inl:V–1-1→({∅} × V)
6 ssv 3089 . . . . . . 7 1o ⊆ V
7 f1ores 5350 . . . . . . 7 ((inl:V–1-1→({∅} × V) ∧ 1o ⊆ V) → (inl ↾ 1o):1o1-1-onto→(inl “ 1o))
85, 6, 7mp2an 422 . . . . . 6 (inl ↾ 1o):1o1-1-onto→(inl “ 1o)
9 1oex 6289 . . . . . . 7 1o ∈ V
109f1oen 6621 . . . . . 6 ((inl ↾ 1o):1o1-1-onto→(inl “ 1o) → 1o ≈ (inl “ 1o))
118, 10ax-mp 5 . . . . 5 1o ≈ (inl “ 1o)
1211ensymi 6644 . . . 4 (inl “ 1o) ≈ 1o
13 djurf1o 6912 . . . . . . . 8 inr:V–1-1-onto→({1o} × V)
14 f1of1 5334 . . . . . . . 8 (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V))
1513, 14ax-mp 5 . . . . . . 7 inr:V–1-1→({1o} × V)
16 f1ores 5350 . . . . . . 7 ((inr:V–1-1→({1o} × V) ∧ 1o ⊆ V) → (inr ↾ 1o):1o1-1-onto→(inr “ 1o))
1715, 6, 16mp2an 422 . . . . . 6 (inr ↾ 1o):1o1-1-onto→(inr “ 1o)
189f1oen 6621 . . . . . 6 ((inr ↾ 1o):1o1-1-onto→(inr “ 1o) → 1o ≈ (inr “ 1o))
1917, 18ax-mp 5 . . . . 5 1o ≈ (inr “ 1o)
2019ensymi 6644 . . . 4 (inr “ 1o) ≈ 1o
21 pm54.43 7014 . . . 4 (((inl “ 1o) ≈ 1o ∧ (inr “ 1o) ≈ 1o) → (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o))
2212, 20, 21mp2an 422 . . 3 (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o)
232, 22mpbi 144 . 2 ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o
241, 23eqbrtrri 3921 1 (1o ⊔ 1o) ≈ 2o
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1316  Vcvv 2660  cun 3039  cin 3040  wss 3041  c0 3333  {csn 3497   class class class wbr 3899   × cxp 4507  cres 4511  cima 4512  1-1wf1 5090  1-1-ontowf1o 5092  1oc1o 6274  2oc2o 6275  cen 6600  cdju 6890  inlcinl 6898  inrcinr 6899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-1st 6006  df-2nd 6007  df-1o 6281  df-2o 6282  df-er 6397  df-en 6603  df-dju 6891  df-inl 6900  df-inr 6901
This theorem is referenced by:  exmidfodomrlemr  7026  exmidfodomrlemrALT  7027
  Copyright terms: Public domain W3C validator