![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dju1p1e2 | GIF version |
Description: Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.) |
Ref | Expression |
---|---|
dju1p1e2 | ⊢ (1o ⊔ 1o) ≈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuun 7128 | . 2 ⊢ ((inl “ 1o) ∪ (inr “ 1o)) = (1o ⊔ 1o) | |
2 | djuin 7125 | . . 3 ⊢ ((inl “ 1o) ∩ (inr “ 1o)) = ∅ | |
3 | djulf1o 7119 | . . . . . . . 8 ⊢ inl:V–1-1-onto→({∅} × V) | |
4 | f1of1 5500 | . . . . . . . 8 ⊢ (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V)) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ inl:V–1-1→({∅} × V) |
6 | ssv 3202 | . . . . . . 7 ⊢ 1o ⊆ V | |
7 | f1ores 5516 | . . . . . . 7 ⊢ ((inl:V–1-1→({∅} × V) ∧ 1o ⊆ V) → (inl ↾ 1o):1o–1-1-onto→(inl “ 1o)) | |
8 | 5, 6, 7 | mp2an 426 | . . . . . 6 ⊢ (inl ↾ 1o):1o–1-1-onto→(inl “ 1o) |
9 | 1oex 6479 | . . . . . . 7 ⊢ 1o ∈ V | |
10 | 9 | f1oen 6815 | . . . . . 6 ⊢ ((inl ↾ 1o):1o–1-1-onto→(inl “ 1o) → 1o ≈ (inl “ 1o)) |
11 | 8, 10 | ax-mp 5 | . . . . 5 ⊢ 1o ≈ (inl “ 1o) |
12 | 11 | ensymi 6838 | . . . 4 ⊢ (inl “ 1o) ≈ 1o |
13 | djurf1o 7120 | . . . . . . . 8 ⊢ inr:V–1-1-onto→({1o} × V) | |
14 | f1of1 5500 | . . . . . . . 8 ⊢ (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V)) | |
15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ inr:V–1-1→({1o} × V) |
16 | f1ores 5516 | . . . . . . 7 ⊢ ((inr:V–1-1→({1o} × V) ∧ 1o ⊆ V) → (inr ↾ 1o):1o–1-1-onto→(inr “ 1o)) | |
17 | 15, 6, 16 | mp2an 426 | . . . . . 6 ⊢ (inr ↾ 1o):1o–1-1-onto→(inr “ 1o) |
18 | 9 | f1oen 6815 | . . . . . 6 ⊢ ((inr ↾ 1o):1o–1-1-onto→(inr “ 1o) → 1o ≈ (inr “ 1o)) |
19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ 1o ≈ (inr “ 1o) |
20 | 19 | ensymi 6838 | . . . 4 ⊢ (inr “ 1o) ≈ 1o |
21 | pm54.43 7252 | . . . 4 ⊢ (((inl “ 1o) ≈ 1o ∧ (inr “ 1o) ≈ 1o) → (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o)) | |
22 | 12, 20, 21 | mp2an 426 | . . 3 ⊢ (((inl “ 1o) ∩ (inr “ 1o)) = ∅ ↔ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o) |
23 | 2, 22 | mpbi 145 | . 2 ⊢ ((inl “ 1o) ∪ (inr “ 1o)) ≈ 2o |
24 | 1, 23 | eqbrtrri 4053 | 1 ⊢ (1o ⊔ 1o) ≈ 2o |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 Vcvv 2760 ∪ cun 3152 ∩ cin 3153 ⊆ wss 3154 ∅c0 3447 {csn 3619 class class class wbr 4030 × cxp 4658 ↾ cres 4662 “ cima 4663 –1-1→wf1 5252 –1-1-onto→wf1o 5254 1oc1o 6464 2oc2o 6465 ≈ cen 6794 ⊔ cdju 7098 inlcinl 7106 inrcinr 7107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-1st 6195 df-2nd 6196 df-1o 6471 df-2o 6472 df-er 6589 df-en 6797 df-dju 7099 df-inl 7108 df-inr 7109 |
This theorem is referenced by: exmidfodomrlemr 7264 exmidfodomrlemrALT 7265 |
Copyright terms: Public domain | W3C validator |