ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnass GIF version

Theorem expnass 10719
Description: A counterexample showing that exponentiation is not associative. (Contributed by Stefan Allan and Gérard Lang, 21-Sep-2010.)
Assertion
Ref Expression
expnass ((3↑3)↑3) < (3↑(3↑3))

Proof of Theorem expnass
StepHypRef Expression
1 3cn 9059 . . 3 3 ∈ ℂ
2 3nn0 9261 . . 3 3 ∈ ℕ0
3 expmul 10658 . . 3 ((3 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (3↑(3 · 3)) = ((3↑3)↑3))
41, 2, 2, 3mp3an 1348 . 2 (3↑(3 · 3)) = ((3↑3)↑3)
5 3re 9058 . . 3 3 ∈ ℝ
62, 2nn0mulcli 9281 . . . 4 (3 · 3) ∈ ℕ0
76nn0zi 9342 . . 3 (3 · 3) ∈ ℤ
82, 2nn0expcli 10639 . . . 4 (3↑3) ∈ ℕ0
98nn0zi 9342 . . 3 (3↑3) ∈ ℤ
10 1lt3 9156 . . . 4 1 < 3
111sqvali 10693 . . . . 5 (3↑2) = (3 · 3)
12 2z 9348 . . . . . 6 2 ∈ ℤ
13 3z 9349 . . . . . 6 3 ∈ ℤ
14 2lt3 9155 . . . . . . 7 2 < 3
15 ltexp2a 10665 . . . . . . 7 (((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) ∧ (1 < 3 ∧ 2 < 3)) → (3↑2) < (3↑3))
1610, 14, 15mpanr12 439 . . . . . 6 ((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) → (3↑2) < (3↑3))
175, 12, 13, 16mp3an 1348 . . . . 5 (3↑2) < (3↑3)
1811, 17eqbrtrri 4053 . . . 4 (3 · 3) < (3↑3)
19 ltexp2a 10665 . . . 4 (((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) ∧ (1 < 3 ∧ (3 · 3) < (3↑3))) → (3↑(3 · 3)) < (3↑(3↑3)))
2010, 18, 19mpanr12 439 . . 3 ((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) → (3↑(3 · 3)) < (3↑(3↑3)))
215, 7, 9, 20mp3an 1348 . 2 (3↑(3 · 3)) < (3↑(3↑3))
224, 21eqbrtrri 4053 1 ((3↑3)↑3) < (3↑(3↑3))
Colors of variables: wff set class
Syntax hints:  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4030  (class class class)co 5919  cc 7872  cr 7873  1c1 7875   · cmul 7879   < clt 8056  2c2 9035  3c3 9036  0cn0 9243  cz 9320  cexp 10612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-n0 9244  df-z 9321  df-uz 9596  df-rp 9723  df-seqfrec 10522  df-exp 10613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator