![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expnass | GIF version |
Description: A counterexample showing that exponentiation is not associative. (Contributed by Stefan Allan and Gérard Lang, 21-Sep-2010.) |
Ref | Expression |
---|---|
expnass | ⊢ ((3↑3)↑3) < (3↑(3↑3)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 8996 | . . 3 ⊢ 3 ∈ ℂ | |
2 | 3nn0 9196 | . . 3 ⊢ 3 ∈ ℕ0 | |
3 | expmul 10567 | . . 3 ⊢ ((3 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (3↑(3 · 3)) = ((3↑3)↑3)) | |
4 | 1, 2, 2, 3 | mp3an 1337 | . 2 ⊢ (3↑(3 · 3)) = ((3↑3)↑3) |
5 | 3re 8995 | . . 3 ⊢ 3 ∈ ℝ | |
6 | 2, 2 | nn0mulcli 9216 | . . . 4 ⊢ (3 · 3) ∈ ℕ0 |
7 | 6 | nn0zi 9277 | . . 3 ⊢ (3 · 3) ∈ ℤ |
8 | 2, 2 | nn0expcli 10548 | . . . 4 ⊢ (3↑3) ∈ ℕ0 |
9 | 8 | nn0zi 9277 | . . 3 ⊢ (3↑3) ∈ ℤ |
10 | 1lt3 9092 | . . . 4 ⊢ 1 < 3 | |
11 | 1 | sqvali 10602 | . . . . 5 ⊢ (3↑2) = (3 · 3) |
12 | 2z 9283 | . . . . . 6 ⊢ 2 ∈ ℤ | |
13 | 3z 9284 | . . . . . 6 ⊢ 3 ∈ ℤ | |
14 | 2lt3 9091 | . . . . . . 7 ⊢ 2 < 3 | |
15 | ltexp2a 10574 | . . . . . . 7 ⊢ (((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) ∧ (1 < 3 ∧ 2 < 3)) → (3↑2) < (3↑3)) | |
16 | 10, 14, 15 | mpanr12 439 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) → (3↑2) < (3↑3)) |
17 | 5, 12, 13, 16 | mp3an 1337 | . . . . 5 ⊢ (3↑2) < (3↑3) |
18 | 11, 17 | eqbrtrri 4028 | . . . 4 ⊢ (3 · 3) < (3↑3) |
19 | ltexp2a 10574 | . . . 4 ⊢ (((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) ∧ (1 < 3 ∧ (3 · 3) < (3↑3))) → (3↑(3 · 3)) < (3↑(3↑3))) | |
20 | 10, 18, 19 | mpanr12 439 | . . 3 ⊢ ((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) → (3↑(3 · 3)) < (3↑(3↑3))) |
21 | 5, 7, 9, 20 | mp3an 1337 | . 2 ⊢ (3↑(3 · 3)) < (3↑(3↑3)) |
22 | 4, 21 | eqbrtrri 4028 | 1 ⊢ ((3↑3)↑3) < (3↑(3↑3)) |
Colors of variables: wff set class |
Syntax hints: ∧ w3a 978 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5877 ℂcc 7811 ℝcr 7812 1c1 7814 · cmul 7818 < clt 7994 2c2 8972 3c3 8973 ℕ0cn0 9178 ℤcz 9255 ↑cexp 10521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-n0 9179 df-z 9256 df-uz 9531 df-rp 9656 df-seqfrec 10448 df-exp 10522 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |