![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expnass | GIF version |
Description: A counterexample showing that exponentiation is not associative. (Contributed by Stefan Allan and Gérard Lang, 21-Sep-2010.) |
Ref | Expression |
---|---|
expnass | ⊢ ((3↑3)↑3) < (3↑(3↑3)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 9059 | . . 3 ⊢ 3 ∈ ℂ | |
2 | 3nn0 9261 | . . 3 ⊢ 3 ∈ ℕ0 | |
3 | expmul 10658 | . . 3 ⊢ ((3 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (3↑(3 · 3)) = ((3↑3)↑3)) | |
4 | 1, 2, 2, 3 | mp3an 1348 | . 2 ⊢ (3↑(3 · 3)) = ((3↑3)↑3) |
5 | 3re 9058 | . . 3 ⊢ 3 ∈ ℝ | |
6 | 2, 2 | nn0mulcli 9281 | . . . 4 ⊢ (3 · 3) ∈ ℕ0 |
7 | 6 | nn0zi 9342 | . . 3 ⊢ (3 · 3) ∈ ℤ |
8 | 2, 2 | nn0expcli 10639 | . . . 4 ⊢ (3↑3) ∈ ℕ0 |
9 | 8 | nn0zi 9342 | . . 3 ⊢ (3↑3) ∈ ℤ |
10 | 1lt3 9156 | . . . 4 ⊢ 1 < 3 | |
11 | 1 | sqvali 10693 | . . . . 5 ⊢ (3↑2) = (3 · 3) |
12 | 2z 9348 | . . . . . 6 ⊢ 2 ∈ ℤ | |
13 | 3z 9349 | . . . . . 6 ⊢ 3 ∈ ℤ | |
14 | 2lt3 9155 | . . . . . . 7 ⊢ 2 < 3 | |
15 | ltexp2a 10665 | . . . . . . 7 ⊢ (((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) ∧ (1 < 3 ∧ 2 < 3)) → (3↑2) < (3↑3)) | |
16 | 10, 14, 15 | mpanr12 439 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) → (3↑2) < (3↑3)) |
17 | 5, 12, 13, 16 | mp3an 1348 | . . . . 5 ⊢ (3↑2) < (3↑3) |
18 | 11, 17 | eqbrtrri 4053 | . . . 4 ⊢ (3 · 3) < (3↑3) |
19 | ltexp2a 10665 | . . . 4 ⊢ (((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) ∧ (1 < 3 ∧ (3 · 3) < (3↑3))) → (3↑(3 · 3)) < (3↑(3↑3))) | |
20 | 10, 18, 19 | mpanr12 439 | . . 3 ⊢ ((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) → (3↑(3 · 3)) < (3↑(3↑3))) |
21 | 5, 7, 9, 20 | mp3an 1348 | . 2 ⊢ (3↑(3 · 3)) < (3↑(3↑3)) |
22 | 4, 21 | eqbrtrri 4053 | 1 ⊢ ((3↑3)↑3) < (3↑(3↑3)) |
Colors of variables: wff set class |
Syntax hints: ∧ w3a 980 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 (class class class)co 5919 ℂcc 7872 ℝcr 7873 1c1 7875 · cmul 7879 < clt 8056 2c2 9035 3c3 9036 ℕ0cn0 9243 ℤcz 9320 ↑cexp 10612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-n0 9244 df-z 9321 df-uz 9596 df-rp 9723 df-seqfrec 10522 df-exp 10613 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |