ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efieq GIF version

Theorem efieq 11687
Description: The exponentials of two imaginary numbers are equal iff their sine and cosine components are equal. (Contributed by Paul Chapman, 15-Mar-2008.)
Assertion
Ref Expression
efieq ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘(i · 𝐴)) = (exp‘(i · 𝐵)) ↔ ((cos‘𝐴) = (cos‘𝐵) ∧ (sin‘𝐴) = (sin‘𝐵))))

Proof of Theorem efieq
StepHypRef Expression
1 recn 7896 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 recn 7896 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
3 efival 11684 . . . 4 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4 efival 11684 . . . 4 (𝐵 ∈ ℂ → (exp‘(i · 𝐵)) = ((cos‘𝐵) + (i · (sin‘𝐵))))
53, 4eqeqan12d 2186 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · 𝐴)) = (exp‘(i · 𝐵)) ↔ ((cos‘𝐴) + (i · (sin‘𝐴))) = ((cos‘𝐵) + (i · (sin‘𝐵)))))
61, 2, 5syl2an 287 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘(i · 𝐴)) = (exp‘(i · 𝐵)) ↔ ((cos‘𝐴) + (i · (sin‘𝐴))) = ((cos‘𝐵) + (i · (sin‘𝐵)))))
7 recoscl 11673 . . . 4 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
8 resincl 11672 . . . 4 (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ)
97, 8jca 304 . . 3 (𝐴 ∈ ℝ → ((cos‘𝐴) ∈ ℝ ∧ (sin‘𝐴) ∈ ℝ))
10 recoscl 11673 . . . 4 (𝐵 ∈ ℝ → (cos‘𝐵) ∈ ℝ)
11 resincl 11672 . . . 4 (𝐵 ∈ ℝ → (sin‘𝐵) ∈ ℝ)
1210, 11jca 304 . . 3 (𝐵 ∈ ℝ → ((cos‘𝐵) ∈ ℝ ∧ (sin‘𝐵) ∈ ℝ))
13 cru 8510 . . 3 ((((cos‘𝐴) ∈ ℝ ∧ (sin‘𝐴) ∈ ℝ) ∧ ((cos‘𝐵) ∈ ℝ ∧ (sin‘𝐵) ∈ ℝ)) → (((cos‘𝐴) + (i · (sin‘𝐴))) = ((cos‘𝐵) + (i · (sin‘𝐵))) ↔ ((cos‘𝐴) = (cos‘𝐵) ∧ (sin‘𝐴) = (sin‘𝐵))))
149, 12, 13syl2an 287 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((cos‘𝐴) + (i · (sin‘𝐴))) = ((cos‘𝐵) + (i · (sin‘𝐵))) ↔ ((cos‘𝐴) = (cos‘𝐵) ∧ (sin‘𝐴) = (sin‘𝐵))))
156, 14bitrd 187 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘(i · 𝐴)) = (exp‘(i · 𝐵)) ↔ ((cos‘𝐴) = (cos‘𝐵) ∧ (sin‘𝐴) = (sin‘𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  cfv 5196  (class class class)co 5851  cc 7761  cr 7762  ici 7765   + caddc 7766   · cmul 7768  expce 11594  sincsin 11596  cosccos 11597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881  ax-arch 7882  ax-caucvg 7883
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-frec 6368  df-1o 6393  df-oadd 6397  df-er 6510  df-en 6716  df-dom 6717  df-fin 6718  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-inn 8868  df-2 8926  df-3 8927  df-4 8928  df-n0 9125  df-z 9202  df-uz 9477  df-q 9568  df-rp 9600  df-ico 9840  df-fz 9955  df-fzo 10088  df-seqfrec 10391  df-exp 10465  df-fac 10649  df-ihash 10699  df-cj 10795  df-re 10796  df-im 10797  df-rsqrt 10951  df-abs 10952  df-clim 11231  df-sumdc 11306  df-ef 11600  df-sin 11602  df-cos 11603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator