| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpopth | GIF version | ||
| Description: An ordered pair theorem for members of cross products. (Contributed by NM, 20-Jun-2007.) |
| Ref | Expression |
|---|---|
| xpopth | ⊢ ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1st2nd2 6261 | . . 3 ⊢ (𝐴 ∈ (𝐶 × 𝐷) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 2 | 1st2nd2 6261 | . . 3 ⊢ (𝐵 ∈ (𝑅 × 𝑆) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | |
| 3 | 1, 2 | eqeqan12d 2221 | . 2 ⊢ ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (𝐴 = 𝐵 ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉)) |
| 4 | 1stexg 6253 | . . . 4 ⊢ (𝐴 ∈ (𝐶 × 𝐷) → (1st ‘𝐴) ∈ V) | |
| 5 | 2ndexg 6254 | . . . 4 ⊢ (𝐴 ∈ (𝐶 × 𝐷) → (2nd ‘𝐴) ∈ V) | |
| 6 | opthg 4282 | . . . 4 ⊢ (((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) | |
| 7 | 4, 5, 6 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ (𝐶 × 𝐷) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) |
| 8 | 7 | adantr 276 | . 2 ⊢ ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) |
| 9 | 3, 8 | bitr2d 189 | 1 ⊢ ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 Vcvv 2772 〈cop 3636 × cxp 4673 ‘cfv 5271 1st c1st 6224 2nd c2nd 6225 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fo 5277 df-fv 5279 df-1st 6226 df-2nd 6227 |
| This theorem is referenced by: xmetxp 14979 |
| Copyright terms: Public domain | W3C validator |