Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sqrt11 | GIF version |
Description: The square root function is one-to-one. Also see sqrt11ap 10931 which would follow easily from this given excluded middle, but which is proved another way without it. (Contributed by Scott Fenton, 11-Jun-2013.) |
Ref | Expression |
---|---|
sqrt11 | ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) = (√‘𝐵) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrtcl 10922 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ) | |
2 | sqrtge0 10926 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (√‘𝐴)) | |
3 | 1, 2 | jca 304 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴) ∈ ℝ ∧ 0 ≤ (√‘𝐴))) |
4 | resqrtcl 10922 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (√‘𝐵) ∈ ℝ) | |
5 | sqrtge0 10926 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → 0 ≤ (√‘𝐵)) | |
6 | 4, 5 | jca 304 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((√‘𝐵) ∈ ℝ ∧ 0 ≤ (√‘𝐵))) |
7 | sq11 10484 | . . 3 ⊢ ((((√‘𝐴) ∈ ℝ ∧ 0 ≤ (√‘𝐴)) ∧ ((√‘𝐵) ∈ ℝ ∧ 0 ≤ (√‘𝐵))) → (((√‘𝐴)↑2) = ((√‘𝐵)↑2) ↔ (√‘𝐴) = (√‘𝐵))) | |
8 | 3, 6, 7 | syl2an 287 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((√‘𝐴)↑2) = ((√‘𝐵)↑2) ↔ (√‘𝐴) = (√‘𝐵))) |
9 | resqrtth 10924 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴) | |
10 | resqrtth 10924 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((√‘𝐵)↑2) = 𝐵) | |
11 | 9, 10 | eqeqan12d 2173 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((√‘𝐴)↑2) = ((√‘𝐵)↑2) ↔ 𝐴 = 𝐵)) |
12 | 8, 11 | bitr3d 189 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) = (√‘𝐵) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1335 ∈ wcel 2128 class class class wbr 3965 ‘cfv 5169 (class class class)co 5821 ℝcr 7725 0cc0 7726 ≤ cle 7907 2c2 8878 ↑cexp 10411 √csqrt 10889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulrcl 7825 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-precex 7836 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-apti 7841 ax-pre-ltadd 7842 ax-pre-mulgt0 7843 ax-pre-mulext 7844 ax-arch 7845 ax-caucvg 7846 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-frec 6335 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-reap 8444 df-ap 8451 df-div 8540 df-inn 8828 df-2 8886 df-3 8887 df-4 8888 df-n0 9085 df-z 9162 df-uz 9434 df-rp 9554 df-seqfrec 10338 df-exp 10412 df-rsqrt 10891 |
This theorem is referenced by: sqrt00 10933 sqrt11i 11025 sqr11d 11066 |
Copyright terms: Public domain | W3C validator |