ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sq11 GIF version

Theorem sq11 10607
Description: The square function is one-to-one for nonnegative reals. Also see sq11ap 10702 which would easily follow from this given excluded middle, but which for us is proved another way. (Contributed by NM, 8-Apr-2001.) (Proof shortened by Mario Carneiro, 28-May-2016.)
Assertion
Ref Expression
sq11 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((๐ดโ†‘2) = (๐ตโ†‘2) โ†” ๐ด = ๐ต))

Proof of Theorem sq11
StepHypRef Expression
1 simpl 109 . . . . 5 ((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ ๐ด โˆˆ โ„)
21recnd 8000 . . . 4 ((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ ๐ด โˆˆ โ„‚)
3 sqval 10592 . . . 4 (๐ด โˆˆ โ„‚ โ†’ (๐ดโ†‘2) = (๐ด ยท ๐ด))
42, 3syl 14 . . 3 ((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ (๐ดโ†‘2) = (๐ด ยท ๐ด))
5 simpl 109 . . . . 5 ((๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต) โ†’ ๐ต โˆˆ โ„)
65recnd 8000 . . . 4 ((๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต) โ†’ ๐ต โˆˆ โ„‚)
7 sqval 10592 . . . 4 (๐ต โˆˆ โ„‚ โ†’ (๐ตโ†‘2) = (๐ต ยท ๐ต))
86, 7syl 14 . . 3 ((๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต) โ†’ (๐ตโ†‘2) = (๐ต ยท ๐ต))
94, 8eqeqan12d 2203 . 2 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((๐ดโ†‘2) = (๐ตโ†‘2) โ†” (๐ด ยท ๐ด) = (๐ต ยท ๐ต)))
10 msq11 8873 . 2 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((๐ด ยท ๐ด) = (๐ต ยท ๐ต) โ†” ๐ด = ๐ต))
119, 10bitrd 188 1 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((๐ดโ†‘2) = (๐ตโ†‘2) โ†” ๐ด = ๐ต))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โ†” wb 105   = wceq 1363   โˆˆ wcel 2158   class class class wbr 4015  (class class class)co 5888  โ„‚cc 7823  โ„cr 7824  0cc0 7825   ยท cmul 7830   โ‰ค cle 8007  2c2 8984  โ†‘cexp 10533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-n0 9191  df-z 9268  df-uz 9543  df-seqfrec 10460  df-exp 10534
This theorem is referenced by:  qsqeqor  10645  sq11d  10701  sqrt11  11062  sqrtsq2  11066  sqabs  11105  dvdssqlem  12045  pythagtriplem3  12281  sinhalfpilem  14508  lgsne0  14735  lgsdinn0  14745
  Copyright terms: Public domain W3C validator