| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sq11 | GIF version | ||
| Description: The square function is one-to-one for nonnegative reals. Also see sq11ap 10799 which would easily follow from this given excluded middle, but which for us is proved another way. (Contributed by NM, 8-Apr-2001.) (Proof shortened by Mario Carneiro, 28-May-2016.) | 
| Ref | Expression | 
|---|---|
| sq11 | ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 109 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ) | |
| 2 | 1 | recnd 8055 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ) | 
| 3 | sqval 10689 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴)) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴↑2) = (𝐴 · 𝐴)) | 
| 5 | simpl 109 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → 𝐵 ∈ ℝ) | |
| 6 | 5 | recnd 8055 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → 𝐵 ∈ ℂ) | 
| 7 | sqval 10689 | . . . 4 ⊢ (𝐵 ∈ ℂ → (𝐵↑2) = (𝐵 · 𝐵)) | |
| 8 | 6, 7 | syl 14 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (𝐵↑2) = (𝐵 · 𝐵)) | 
| 9 | 4, 8 | eqeqan12d 2212 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 · 𝐴) = (𝐵 · 𝐵))) | 
| 10 | msq11 8929 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) = (𝐵 · 𝐵) ↔ 𝐴 = 𝐵)) | |
| 11 | 9, 10 | bitrd 188 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 (class class class)co 5922 ℂcc 7877 ℝcr 7878 0cc0 7879 · cmul 7884 ≤ cle 8062 2c2 9041 ↑cexp 10630 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-seqfrec 10540 df-exp 10631 | 
| This theorem is referenced by: qsqeqor 10742 sq11d 10798 sqrt11 11204 sqrtsq2 11208 sqabs 11247 dvdssqlem 12197 pythagtriplem3 12436 sinhalfpilem 15027 lgsne0 15279 lgsdinn0 15289 | 
| Copyright terms: Public domain | W3C validator |