![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sq11 | GIF version |
Description: The square function is one-to-one for nonnegative reals. Also see sq11ap 10702 which would easily follow from this given excluded middle, but which for us is proved another way. (Contributed by NM, 8-Apr-2001.) (Proof shortened by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
sq11 | โข (((๐ด โ โ โง 0 โค ๐ด) โง (๐ต โ โ โง 0 โค ๐ต)) โ ((๐ดโ2) = (๐ตโ2) โ ๐ด = ๐ต)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . . 5 โข ((๐ด โ โ โง 0 โค ๐ด) โ ๐ด โ โ) | |
2 | 1 | recnd 8000 | . . . 4 โข ((๐ด โ โ โง 0 โค ๐ด) โ ๐ด โ โ) |
3 | sqval 10592 | . . . 4 โข (๐ด โ โ โ (๐ดโ2) = (๐ด ยท ๐ด)) | |
4 | 2, 3 | syl 14 | . . 3 โข ((๐ด โ โ โง 0 โค ๐ด) โ (๐ดโ2) = (๐ด ยท ๐ด)) |
5 | simpl 109 | . . . . 5 โข ((๐ต โ โ โง 0 โค ๐ต) โ ๐ต โ โ) | |
6 | 5 | recnd 8000 | . . . 4 โข ((๐ต โ โ โง 0 โค ๐ต) โ ๐ต โ โ) |
7 | sqval 10592 | . . . 4 โข (๐ต โ โ โ (๐ตโ2) = (๐ต ยท ๐ต)) | |
8 | 6, 7 | syl 14 | . . 3 โข ((๐ต โ โ โง 0 โค ๐ต) โ (๐ตโ2) = (๐ต ยท ๐ต)) |
9 | 4, 8 | eqeqan12d 2203 | . 2 โข (((๐ด โ โ โง 0 โค ๐ด) โง (๐ต โ โ โง 0 โค ๐ต)) โ ((๐ดโ2) = (๐ตโ2) โ (๐ด ยท ๐ด) = (๐ต ยท ๐ต))) |
10 | msq11 8873 | . 2 โข (((๐ด โ โ โง 0 โค ๐ด) โง (๐ต โ โ โง 0 โค ๐ต)) โ ((๐ด ยท ๐ด) = (๐ต ยท ๐ต) โ ๐ด = ๐ต)) | |
11 | 9, 10 | bitrd 188 | 1 โข (((๐ด โ โ โง 0 โค ๐ด) โง (๐ต โ โ โง 0 โค ๐ต)) โ ((๐ดโ2) = (๐ตโ2) โ ๐ด = ๐ต)) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 โ wb 105 = wceq 1363 โ wcel 2158 class class class wbr 4015 (class class class)co 5888 โcc 7823 โcr 7824 0cc0 7825 ยท cmul 7830 โค cle 8007 2c2 8984 โcexp 10533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-pre-mulext 7943 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-frec 6406 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-ap 8553 df-div 8644 df-inn 8934 df-2 8992 df-n0 9191 df-z 9268 df-uz 9543 df-seqfrec 10460 df-exp 10534 |
This theorem is referenced by: qsqeqor 10645 sq11d 10701 sqrt11 11062 sqrtsq2 11066 sqabs 11105 dvdssqlem 12045 pythagtriplem3 12281 sinhalfpilem 14508 lgsne0 14735 lgsdinn0 14745 |
Copyright terms: Public domain | W3C validator |