ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfv GIF version

Theorem eqfnfv 5677
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
eqfnfv ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺

Proof of Theorem eqfnfv
StepHypRef Expression
1 dffn5im 5624 . . 3 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
2 dffn5im 5624 . . 3 (𝐺 Fn 𝐴𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
31, 2eqeqan12d 2221 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐺𝑥))))
4 funfvex 5593 . . . . . 6 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
54funfni 5376 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ V)
65ralrimiva 2579 . . . 4 (𝐹 Fn 𝐴 → ∀𝑥𝐴 (𝐹𝑥) ∈ V)
7 mpteqb 5670 . . . 4 (∀𝑥𝐴 (𝐹𝑥) ∈ V → ((𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐺𝑥)) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
86, 7syl 14 . . 3 (𝐹 Fn 𝐴 → ((𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐺𝑥)) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
98adantr 276 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ((𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐺𝑥)) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
103, 9bitrd 188 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  wral 2484  Vcvv 2772  cmpt 4105   Fn wfn 5266  cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279
This theorem is referenced by:  eqfnfv2  5678  eqfnfvd  5680  eqfnfv2f  5681  fvreseq  5683  fnmptfvd  5684  fneqeql  5688  fconst2g  5799  cocan1  5856  cocan2  5857  tfri3  6453  updjud  7184  nninfwlporlemd  7274  ser0f  10679  prodf1f  11854  1arithlem4  12689  1arith  12690  isgrpinv  13386  cnmpt11  14755  cnmpt21  14763  nnnninfex  15959  nninfnfiinf  15960
  Copyright terms: Public domain W3C validator