ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfv GIF version

Theorem eqfnfv 5615
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
eqfnfv ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺

Proof of Theorem eqfnfv
StepHypRef Expression
1 dffn5im 5563 . . 3 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
2 dffn5im 5563 . . 3 (𝐺 Fn 𝐴𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
31, 2eqeqan12d 2193 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐺𝑥))))
4 funfvex 5534 . . . . . 6 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
54funfni 5318 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ V)
65ralrimiva 2550 . . . 4 (𝐹 Fn 𝐴 → ∀𝑥𝐴 (𝐹𝑥) ∈ V)
7 mpteqb 5608 . . . 4 (∀𝑥𝐴 (𝐹𝑥) ∈ V → ((𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐺𝑥)) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
86, 7syl 14 . . 3 (𝐹 Fn 𝐴 → ((𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐺𝑥)) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
98adantr 276 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ((𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐺𝑥)) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
103, 9bitrd 188 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  Vcvv 2739  cmpt 4066   Fn wfn 5213  cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226
This theorem is referenced by:  eqfnfv2  5616  eqfnfvd  5618  eqfnfv2f  5619  fvreseq  5621  fnmptfvd  5622  fneqeql  5626  fconst2g  5733  cocan1  5790  cocan2  5791  tfri3  6370  updjud  7083  nninfwlporlemd  7172  ser0f  10517  prodf1f  11553  1arithlem4  12366  1arith  12367  isgrpinv  12931  cnmpt11  13822  cnmpt21  13830
  Copyright terms: Public domain W3C validator