| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqfnfv | GIF version | ||
| Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| eqfnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5im 5647 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
| 2 | dffn5im 5647 | . . 3 ⊢ (𝐺 Fn 𝐴 → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) | |
| 3 | 1, 2 | eqeqan12d 2223 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) |
| 4 | funfvex 5616 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
| 5 | 4 | funfni 5395 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
| 6 | 5 | ralrimiva 2581 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V) |
| 7 | mpteqb 5693 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
| 8 | 6, 7 | syl 14 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 9 | 8 | adantr 276 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 10 | 3, 9 | bitrd 188 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ∀wral 2486 Vcvv 2776 ↦ cmpt 4121 Fn wfn 5285 ‘cfv 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 |
| This theorem is referenced by: eqfnfv2 5701 eqfnfvd 5703 eqfnfv2f 5704 fvreseq 5706 fnmptfvd 5707 fneqeql 5711 fconst2g 5822 cocan1 5879 cocan2 5880 tfri3 6476 updjud 7210 nninfwlporlemd 7300 ser0f 10716 prodf1f 11969 1arithlem4 12804 1arith 12805 isgrpinv 13501 cnmpt11 14870 cnmpt21 14878 nnnninfex 16161 nninfnfiinf 16162 |
| Copyright terms: Public domain | W3C validator |