ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismhm GIF version

Theorem ismhm 13033
Description: Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
ismhm.b 𝐵 = (Base‘𝑆)
ismhm.c 𝐶 = (Base‘𝑇)
ismhm.p + = (+g𝑆)
ismhm.q = (+g𝑇)
ismhm.z 0 = (0g𝑆)
ismhm.y 𝑌 = (0g𝑇)
Assertion
Ref Expression
ismhm (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   + (𝑥,𝑦)   (𝑥,𝑦)   𝑌(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem ismhm
Dummy variables 𝑓 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhm 13031 . . 3 MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))})
21elmpocl 6113 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd))
3 fnmap 6709 . . . . . . 7 𝑚 Fn (V × V)
4 ismhm.c . . . . . . . 8 𝐶 = (Base‘𝑇)
5 basfn 12676 . . . . . . . . 9 Base Fn V
6 simpr 110 . . . . . . . . . 10 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑇 ∈ Mnd)
76elexd 2773 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑇 ∈ V)
8 funfvex 5571 . . . . . . . . . 10 ((Fun Base ∧ 𝑇 ∈ dom Base) → (Base‘𝑇) ∈ V)
98funfni 5354 . . . . . . . . 9 ((Base Fn V ∧ 𝑇 ∈ V) → (Base‘𝑇) ∈ V)
105, 7, 9sylancr 414 . . . . . . . 8 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (Base‘𝑇) ∈ V)
114, 10eqeltrid 2280 . . . . . . 7 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐶 ∈ V)
12 ismhm.b . . . . . . . 8 𝐵 = (Base‘𝑆)
13 simpl 109 . . . . . . . . . 10 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑆 ∈ Mnd)
1413elexd 2773 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑆 ∈ V)
15 funfvex 5571 . . . . . . . . . 10 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
1615funfni 5354 . . . . . . . . 9 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
175, 14, 16sylancr 414 . . . . . . . 8 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (Base‘𝑆) ∈ V)
1812, 17eqeltrid 2280 . . . . . . 7 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐵 ∈ V)
19 fnovex 5951 . . . . . . 7 (( ↑𝑚 Fn (V × V) ∧ 𝐶 ∈ V ∧ 𝐵 ∈ V) → (𝐶𝑚 𝐵) ∈ V)
203, 11, 18, 19mp3an2i 1353 . . . . . 6 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐶𝑚 𝐵) ∈ V)
21 rabexg 4172 . . . . . 6 ((𝐶𝑚 𝐵) ∈ V → {𝑓 ∈ (𝐶𝑚 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)} ∈ V)
2220, 21syl 14 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → {𝑓 ∈ (𝐶𝑚 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)} ∈ V)
23 fveq2 5554 . . . . . . . . 9 (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇))
2423, 4eqtr4di 2244 . . . . . . . 8 (𝑡 = 𝑇 → (Base‘𝑡) = 𝐶)
25 fveq2 5554 . . . . . . . . 9 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
2625, 12eqtr4di 2244 . . . . . . . 8 (𝑠 = 𝑆 → (Base‘𝑠) = 𝐵)
2724, 26oveqan12rd 5938 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) = (𝐶𝑚 𝐵))
2826adantr 276 . . . . . . . . 9 ((𝑠 = 𝑆𝑡 = 𝑇) → (Base‘𝑠) = 𝐵)
29 fveq2 5554 . . . . . . . . . . . . . 14 (𝑠 = 𝑆 → (+g𝑠) = (+g𝑆))
30 ismhm.p . . . . . . . . . . . . . 14 + = (+g𝑆)
3129, 30eqtr4di 2244 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (+g𝑠) = + )
3231oveqd 5935 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑥(+g𝑠)𝑦) = (𝑥 + 𝑦))
3332fveq2d 5558 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑓‘(𝑥(+g𝑠)𝑦)) = (𝑓‘(𝑥 + 𝑦)))
34 fveq2 5554 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (+g𝑡) = (+g𝑇))
35 ismhm.q . . . . . . . . . . . . 13 = (+g𝑇)
3634, 35eqtr4di 2244 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (+g𝑡) = )
3736oveqd 5935 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) = ((𝑓𝑥) (𝑓𝑦)))
3833, 37eqeqan12d 2209 . . . . . . . . . 10 ((𝑠 = 𝑆𝑡 = 𝑇) → ((𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
3928, 38raleqbidv 2706 . . . . . . . . 9 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ ∀𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
4028, 39raleqbidv 2706 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
41 fveq2 5554 . . . . . . . . . . 11 (𝑠 = 𝑆 → (0g𝑠) = (0g𝑆))
42 ismhm.z . . . . . . . . . . 11 0 = (0g𝑆)
4341, 42eqtr4di 2244 . . . . . . . . . 10 (𝑠 = 𝑆 → (0g𝑠) = 0 )
4443fveq2d 5558 . . . . . . . . 9 (𝑠 = 𝑆 → (𝑓‘(0g𝑠)) = (𝑓0 ))
45 fveq2 5554 . . . . . . . . . 10 (𝑡 = 𝑇 → (0g𝑡) = (0g𝑇))
46 ismhm.y . . . . . . . . . 10 𝑌 = (0g𝑇)
4745, 46eqtr4di 2244 . . . . . . . . 9 (𝑡 = 𝑇 → (0g𝑡) = 𝑌)
4844, 47eqeqan12d 2209 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → ((𝑓‘(0g𝑠)) = (0g𝑡) ↔ (𝑓0 ) = 𝑌))
4940, 48anbi12d 473 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → ((∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡)) ↔ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)))
5027, 49rabeqbidv 2755 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))} = {𝑓 ∈ (𝐶𝑚 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)})
5150, 1ovmpoga 6048 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ {𝑓 ∈ (𝐶𝑚 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)} ∈ V) → (𝑆 MndHom 𝑇) = {𝑓 ∈ (𝐶𝑚 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)})
5222, 51mpd3an3 1349 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) = {𝑓 ∈ (𝐶𝑚 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)})
5352eleq2d 2263 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (𝐶𝑚 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)}))
5411, 18elmapd 6716 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐹 ∈ (𝐶𝑚 𝐵) ↔ 𝐹:𝐵𝐶))
5554anbi1d 465 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝐹 ∈ (𝐶𝑚 𝐵) ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)) ↔ (𝐹:𝐵𝐶 ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌))))
56 fveq1 5553 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥 + 𝑦)) = (𝐹‘(𝑥 + 𝑦)))
57 fveq1 5553 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
58 fveq1 5553 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
5957, 58oveq12d 5936 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥) (𝑓𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
6056, 59eqeq12d 2208 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ↔ (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
61602ralbidv 2518 . . . . . 6 (𝑓 = 𝐹 → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
62 fveq1 5553 . . . . . . 7 (𝑓 = 𝐹 → (𝑓0 ) = (𝐹0 ))
6362eqeq1d 2202 . . . . . 6 (𝑓 = 𝐹 → ((𝑓0 ) = 𝑌 ↔ (𝐹0 ) = 𝑌))
6461, 63anbi12d 473 . . . . 5 (𝑓 = 𝐹 → ((∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌) ↔ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
6564elrab 2916 . . . 4 (𝐹 ∈ {𝑓 ∈ (𝐶𝑚 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)} ↔ (𝐹 ∈ (𝐶𝑚 𝐵) ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
66 3anass 984 . . . 4 ((𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌) ↔ (𝐹:𝐵𝐶 ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
6755, 65, 663bitr4g 223 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐹 ∈ {𝑓 ∈ (𝐶𝑚 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)} ↔ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
6853, 67bitrd 188 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
692, 68biadanii 613 1 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wral 2472  {crab 2476  Vcvv 2760   × cxp 4657   Fn wfn 5249  wf 5250  cfv 5254  (class class class)co 5918  𝑚 cmap 6702  Basecbs 12618  +gcplusg 12695  0gc0g 12867  Mndcmnd 12997   MndHom cmhm 13029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-mhm 13031
This theorem is referenced by:  mhmf  13037  mhmpropd  13038  mhmlin  13039  mhm0  13040  idmhm  13041  mhmf1o  13042  0mhm  13058  resmhm  13059  resmhm2  13060  resmhm2b  13061  mhmco  13062  mhmfmhm  13187  ghmmhm  13323  srglmhm  13489  srgrmhm  13490  dfrhm2  13650  isrhm2d  13661
  Copyright terms: Public domain W3C validator