ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismhm GIF version

Theorem ismhm 12716
Description: Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
ismhm.b 𝐵 = (Base‘𝑆)
ismhm.c 𝐶 = (Base‘𝑇)
ismhm.p + = (+g𝑆)
ismhm.q = (+g𝑇)
ismhm.z 0 = (0g𝑆)
ismhm.y 𝑌 = (0g𝑇)
Assertion
Ref Expression
ismhm (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   + (𝑥,𝑦)   (𝑥,𝑦)   𝑌(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem ismhm
Dummy variables 𝑓 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhm 12714 . . 3 MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))})
21elmpocl 6059 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd))
3 fnmap 6645 . . . . . . 7 𝑚 Fn (V × V)
4 ismhm.c . . . . . . . 8 𝐶 = (Base‘𝑇)
5 basfn 12486 . . . . . . . . 9 Base Fn V
6 simpr 110 . . . . . . . . . 10 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑇 ∈ Mnd)
76elexd 2748 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑇 ∈ V)
8 funfvex 5524 . . . . . . . . . 10 ((Fun Base ∧ 𝑇 ∈ dom Base) → (Base‘𝑇) ∈ V)
98funfni 5308 . . . . . . . . 9 ((Base Fn V ∧ 𝑇 ∈ V) → (Base‘𝑇) ∈ V)
105, 7, 9sylancr 414 . . . . . . . 8 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (Base‘𝑇) ∈ V)
114, 10eqeltrid 2262 . . . . . . 7 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐶 ∈ V)
12 ismhm.b . . . . . . . 8 𝐵 = (Base‘𝑆)
13 simpl 109 . . . . . . . . . 10 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑆 ∈ Mnd)
1413elexd 2748 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑆 ∈ V)
15 funfvex 5524 . . . . . . . . . 10 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
1615funfni 5308 . . . . . . . . 9 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
175, 14, 16sylancr 414 . . . . . . . 8 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (Base‘𝑆) ∈ V)
1812, 17eqeltrid 2262 . . . . . . 7 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐵 ∈ V)
19 fnovex 5898 . . . . . . 7 (( ↑𝑚 Fn (V × V) ∧ 𝐶 ∈ V ∧ 𝐵 ∈ V) → (𝐶𝑚 𝐵) ∈ V)
203, 11, 18, 19mp3an2i 1342 . . . . . 6 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐶𝑚 𝐵) ∈ V)
21 rabexg 4141 . . . . . 6 ((𝐶𝑚 𝐵) ∈ V → {𝑓 ∈ (𝐶𝑚 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)} ∈ V)
2220, 21syl 14 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → {𝑓 ∈ (𝐶𝑚 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)} ∈ V)
23 fveq2 5507 . . . . . . . . 9 (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇))
2423, 4eqtr4di 2226 . . . . . . . 8 (𝑡 = 𝑇 → (Base‘𝑡) = 𝐶)
25 fveq2 5507 . . . . . . . . 9 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
2625, 12eqtr4di 2226 . . . . . . . 8 (𝑠 = 𝑆 → (Base‘𝑠) = 𝐵)
2724, 26oveqan12rd 5885 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) = (𝐶𝑚 𝐵))
2826adantr 276 . . . . . . . . 9 ((𝑠 = 𝑆𝑡 = 𝑇) → (Base‘𝑠) = 𝐵)
29 fveq2 5507 . . . . . . . . . . . . . 14 (𝑠 = 𝑆 → (+g𝑠) = (+g𝑆))
30 ismhm.p . . . . . . . . . . . . . 14 + = (+g𝑆)
3129, 30eqtr4di 2226 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (+g𝑠) = + )
3231oveqd 5882 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑥(+g𝑠)𝑦) = (𝑥 + 𝑦))
3332fveq2d 5511 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑓‘(𝑥(+g𝑠)𝑦)) = (𝑓‘(𝑥 + 𝑦)))
34 fveq2 5507 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (+g𝑡) = (+g𝑇))
35 ismhm.q . . . . . . . . . . . . 13 = (+g𝑇)
3634, 35eqtr4di 2226 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (+g𝑡) = )
3736oveqd 5882 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) = ((𝑓𝑥) (𝑓𝑦)))
3833, 37eqeqan12d 2191 . . . . . . . . . 10 ((𝑠 = 𝑆𝑡 = 𝑇) → ((𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
3928, 38raleqbidv 2682 . . . . . . . . 9 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ ∀𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
4028, 39raleqbidv 2682 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
41 fveq2 5507 . . . . . . . . . . 11 (𝑠 = 𝑆 → (0g𝑠) = (0g𝑆))
42 ismhm.z . . . . . . . . . . 11 0 = (0g𝑆)
4341, 42eqtr4di 2226 . . . . . . . . . 10 (𝑠 = 𝑆 → (0g𝑠) = 0 )
4443fveq2d 5511 . . . . . . . . 9 (𝑠 = 𝑆 → (𝑓‘(0g𝑠)) = (𝑓0 ))
45 fveq2 5507 . . . . . . . . . 10 (𝑡 = 𝑇 → (0g𝑡) = (0g𝑇))
46 ismhm.y . . . . . . . . . 10 𝑌 = (0g𝑇)
4745, 46eqtr4di 2226 . . . . . . . . 9 (𝑡 = 𝑇 → (0g𝑡) = 𝑌)
4844, 47eqeqan12d 2191 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → ((𝑓‘(0g𝑠)) = (0g𝑡) ↔ (𝑓0 ) = 𝑌))
4940, 48anbi12d 473 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → ((∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡)) ↔ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)))
5027, 49rabeqbidv 2730 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))} = {𝑓 ∈ (𝐶𝑚 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)})
5150, 1ovmpoga 5994 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ {𝑓 ∈ (𝐶𝑚 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)} ∈ V) → (𝑆 MndHom 𝑇) = {𝑓 ∈ (𝐶𝑚 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)})
5222, 51mpd3an3 1338 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) = {𝑓 ∈ (𝐶𝑚 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)})
5352eleq2d 2245 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (𝐶𝑚 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)}))
5411, 18elmapd 6652 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐹 ∈ (𝐶𝑚 𝐵) ↔ 𝐹:𝐵𝐶))
5554anbi1d 465 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝐹 ∈ (𝐶𝑚 𝐵) ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)) ↔ (𝐹:𝐵𝐶 ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌))))
56 fveq1 5506 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥 + 𝑦)) = (𝐹‘(𝑥 + 𝑦)))
57 fveq1 5506 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
58 fveq1 5506 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
5957, 58oveq12d 5883 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥) (𝑓𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
6056, 59eqeq12d 2190 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ↔ (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
61602ralbidv 2499 . . . . . 6 (𝑓 = 𝐹 → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
62 fveq1 5506 . . . . . . 7 (𝑓 = 𝐹 → (𝑓0 ) = (𝐹0 ))
6362eqeq1d 2184 . . . . . 6 (𝑓 = 𝐹 → ((𝑓0 ) = 𝑌 ↔ (𝐹0 ) = 𝑌))
6461, 63anbi12d 473 . . . . 5 (𝑓 = 𝐹 → ((∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌) ↔ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
6564elrab 2891 . . . 4 (𝐹 ∈ {𝑓 ∈ (𝐶𝑚 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)} ↔ (𝐹 ∈ (𝐶𝑚 𝐵) ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
66 3anass 982 . . . 4 ((𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌) ↔ (𝐹:𝐵𝐶 ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
6755, 65, 663bitr4g 223 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐹 ∈ {𝑓 ∈ (𝐶𝑚 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)} ↔ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
6853, 67bitrd 188 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
692, 68biadanii 613 1 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2146  wral 2453  {crab 2457  Vcvv 2735   × cxp 4618   Fn wfn 5203  wf 5204  cfv 5208  (class class class)co 5865  𝑚 cmap 6638  Basecbs 12429  +gcplusg 12493  0gc0g 12627  Mndcmnd 12683   MndHom cmhm 12712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-map 6640  df-inn 8893  df-ndx 12432  df-slot 12433  df-base 12435  df-mhm 12714
This theorem is referenced by:  mhmf  12719  mhmpropd  12720  mhmlin  12721  mhm0  12722  idmhm  12723  mhmf1o  12724  0mhm  12735  mhmco  12736  mhmfmhm  12842  srglmhm  12973  srgrmhm  12974
  Copyright terms: Public domain W3C validator