Step | Hyp | Ref
| Expression |
1 | | df-mhm 12683 |
. . 3
⊢ MndHom =
(𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑𝑚
(Base‘𝑠)) ∣
(∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))}) |
2 | 1 | elmpocl 6047 |
. 2
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd)) |
3 | | fnmap 6633 |
. . . . . . 7
⊢
↑𝑚 Fn (V × V) |
4 | | ismhm.c |
. . . . . . . 8
⊢ 𝐶 = (Base‘𝑇) |
5 | | basfn 12473 |
. . . . . . . . 9
⊢ Base Fn
V |
6 | | simpr 109 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑇 ∈ Mnd) |
7 | 6 | elexd 2743 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑇 ∈ V) |
8 | | funfvex 5513 |
. . . . . . . . . 10
⊢ ((Fun
Base ∧ 𝑇 ∈ dom
Base) → (Base‘𝑇)
∈ V) |
9 | 8 | funfni 5298 |
. . . . . . . . 9
⊢ ((Base Fn
V ∧ 𝑇 ∈ V) →
(Base‘𝑇) ∈
V) |
10 | 5, 7, 9 | sylancr 412 |
. . . . . . . 8
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) →
(Base‘𝑇) ∈
V) |
11 | 4, 10 | eqeltrid 2257 |
. . . . . . 7
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐶 ∈ V) |
12 | | ismhm.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑆) |
13 | | simpl 108 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑆 ∈ Mnd) |
14 | 13 | elexd 2743 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑆 ∈ V) |
15 | | funfvex 5513 |
. . . . . . . . . 10
⊢ ((Fun
Base ∧ 𝑆 ∈ dom
Base) → (Base‘𝑆)
∈ V) |
16 | 15 | funfni 5298 |
. . . . . . . . 9
⊢ ((Base Fn
V ∧ 𝑆 ∈ V) →
(Base‘𝑆) ∈
V) |
17 | 5, 14, 16 | sylancr 412 |
. . . . . . . 8
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) →
(Base‘𝑆) ∈
V) |
18 | 12, 17 | eqeltrid 2257 |
. . . . . . 7
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐵 ∈ V) |
19 | | fnovex 5886 |
. . . . . . 7
⊢ ((
↑𝑚 Fn (V × V) ∧ 𝐶 ∈ V ∧ 𝐵 ∈ V) → (𝐶 ↑𝑚 𝐵) ∈ V) |
20 | 3, 11, 18, 19 | mp3an2i 1337 |
. . . . . 6
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐶 ↑𝑚
𝐵) ∈
V) |
21 | | rabexg 4132 |
. . . . . 6
⊢ ((𝐶 ↑𝑚
𝐵) ∈ V → {𝑓 ∈ (𝐶 ↑𝑚 𝐵) ∣ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)) ∧ (𝑓‘ 0 ) = 𝑌)} ∈ V) |
22 | 20, 21 | syl 14 |
. . . . 5
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → {𝑓 ∈ (𝐶 ↑𝑚 𝐵) ∣ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)) ∧ (𝑓‘ 0 ) = 𝑌)} ∈ V) |
23 | | fveq2 5496 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇)) |
24 | 23, 4 | eqtr4di 2221 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → (Base‘𝑡) = 𝐶) |
25 | | fveq2 5496 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆)) |
26 | 25, 12 | eqtr4di 2221 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = 𝐵) |
27 | 24, 26 | oveqan12rd 5873 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ((Base‘𝑡) ↑𝑚
(Base‘𝑠)) = (𝐶 ↑𝑚
𝐵)) |
28 | 26 | adantr 274 |
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (Base‘𝑠) = 𝐵) |
29 | | fveq2 5496 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑆 → (+g‘𝑠) = (+g‘𝑆)) |
30 | | ismhm.p |
. . . . . . . . . . . . . 14
⊢ + =
(+g‘𝑆) |
31 | 29, 30 | eqtr4di 2221 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑆 → (+g‘𝑠) = + ) |
32 | 31 | oveqd 5870 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑆 → (𝑥(+g‘𝑠)𝑦) = (𝑥 + 𝑦)) |
33 | 32 | fveq2d 5500 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑆 → (𝑓‘(𝑥(+g‘𝑠)𝑦)) = (𝑓‘(𝑥 + 𝑦))) |
34 | | fveq2 5496 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑇 → (+g‘𝑡) = (+g‘𝑇)) |
35 | | ismhm.q |
. . . . . . . . . . . . 13
⊢ ⨣ =
(+g‘𝑇) |
36 | 34, 35 | eqtr4di 2221 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑇 → (+g‘𝑡) = ⨣ ) |
37 | 36 | oveqd 5870 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦))) |
38 | 33, 37 | eqeqan12d 2186 |
. . . . . . . . . 10
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ((𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ↔ (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)))) |
39 | 28, 38 | raleqbidv 2677 |
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ↔ ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)))) |
40 | 28, 39 | raleqbidv 2677 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)))) |
41 | | fveq2 5496 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑆 → (0g‘𝑠) = (0g‘𝑆)) |
42 | | ismhm.z |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑆) |
43 | 41, 42 | eqtr4di 2221 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → (0g‘𝑠) = 0 ) |
44 | 43 | fveq2d 5500 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → (𝑓‘(0g‘𝑠)) = (𝑓‘ 0 )) |
45 | | fveq2 5496 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (0g‘𝑡) = (0g‘𝑇)) |
46 | | ismhm.y |
. . . . . . . . . 10
⊢ 𝑌 = (0g‘𝑇) |
47 | 45, 46 | eqtr4di 2221 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → (0g‘𝑡) = 𝑌) |
48 | 44, 47 | eqeqan12d 2186 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ((𝑓‘(0g‘𝑠)) = (0g‘𝑡) ↔ (𝑓‘ 0 ) = 𝑌)) |
49 | 40, 48 | anbi12d 470 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ((∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡)) ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)) ∧ (𝑓‘ 0 ) = 𝑌))) |
50 | 27, 49 | rabeqbidv 2725 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → {𝑓 ∈ ((Base‘𝑡) ↑𝑚
(Base‘𝑠)) ∣
(∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))} = {𝑓 ∈ (𝐶 ↑𝑚 𝐵) ∣ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)) ∧ (𝑓‘ 0 ) = 𝑌)}) |
51 | 50, 1 | ovmpoga 5982 |
. . . . 5
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ {𝑓 ∈ (𝐶 ↑𝑚 𝐵) ∣ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)) ∧ (𝑓‘ 0 ) = 𝑌)} ∈ V) → (𝑆 MndHom 𝑇) = {𝑓 ∈ (𝐶 ↑𝑚 𝐵) ∣ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)) ∧ (𝑓‘ 0 ) = 𝑌)}) |
52 | 22, 51 | mpd3an3 1333 |
. . . 4
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) = {𝑓 ∈ (𝐶 ↑𝑚 𝐵) ∣ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)) ∧ (𝑓‘ 0 ) = 𝑌)}) |
53 | 52 | eleq2d 2240 |
. . 3
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (𝐶 ↑𝑚 𝐵) ∣ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)) ∧ (𝑓‘ 0 ) = 𝑌)})) |
54 | 11, 18 | elmapd 6640 |
. . . . 5
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐹 ∈ (𝐶 ↑𝑚 𝐵) ↔ 𝐹:𝐵⟶𝐶)) |
55 | 54 | anbi1d 462 |
. . . 4
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝐹 ∈ (𝐶 ↑𝑚 𝐵) ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌)) ↔ (𝐹:𝐵⟶𝐶 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌)))) |
56 | | fveq1 5495 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥 + 𝑦)) = (𝐹‘(𝑥 + 𝑦))) |
57 | | fveq1 5495 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
58 | | fveq1 5495 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) |
59 | 57, 58 | oveq12d 5871 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
60 | 56, 59 | eqeq12d 2185 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ((𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)) ↔ (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))) |
61 | 60 | 2ralbidv 2494 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))) |
62 | | fveq1 5495 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑓‘ 0 ) = (𝐹‘ 0 )) |
63 | 62 | eqeq1d 2179 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((𝑓‘ 0 ) = 𝑌 ↔ (𝐹‘ 0 ) = 𝑌)) |
64 | 61, 63 | anbi12d 470 |
. . . . 5
⊢ (𝑓 = 𝐹 → ((∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)) ∧ (𝑓‘ 0 ) = 𝑌) ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌))) |
65 | 64 | elrab 2886 |
. . . 4
⊢ (𝐹 ∈ {𝑓 ∈ (𝐶 ↑𝑚 𝐵) ∣ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)) ∧ (𝑓‘ 0 ) = 𝑌)} ↔ (𝐹 ∈ (𝐶 ↑𝑚 𝐵) ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌))) |
66 | | 3anass 977 |
. . . 4
⊢ ((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌) ↔ (𝐹:𝐵⟶𝐶 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌))) |
67 | 55, 65, 66 | 3bitr4g 222 |
. . 3
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐹 ∈ {𝑓 ∈ (𝐶 ↑𝑚 𝐵) ∣ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)) ∧ (𝑓‘ 0 ) = 𝑌)} ↔ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌))) |
68 | 53, 67 | bitrd 187 |
. 2
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌))) |
69 | 2, 68 | biadanii 608 |
1
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌))) |