Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqabs GIF version

Theorem sqabs 10794
 Description: The squares of two reals are equal iff their absolute values are equal. (Contributed by NM, 6-Mar-2009.)
Assertion
Ref Expression
sqabs ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ (abs‘𝐴) = (abs‘𝐵)))

Proof of Theorem sqabs
StepHypRef Expression
1 resqcl 10300 . . . . 5 (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ)
2 sqge0 10309 . . . . 5 (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2))
3 absid 10783 . . . . 5 (((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2)) → (abs‘(𝐴↑2)) = (𝐴↑2))
41, 2, 3syl2anc 406 . . . 4 (𝐴 ∈ ℝ → (abs‘(𝐴↑2)) = (𝐴↑2))
5 recn 7717 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
6 2nn0 8945 . . . . 5 2 ∈ ℕ0
7 absexp 10791 . . . . 5 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘(𝐴↑2)) = ((abs‘𝐴)↑2))
85, 6, 7sylancl 407 . . . 4 (𝐴 ∈ ℝ → (abs‘(𝐴↑2)) = ((abs‘𝐴)↑2))
94, 8eqtr3d 2150 . . 3 (𝐴 ∈ ℝ → (𝐴↑2) = ((abs‘𝐴)↑2))
10 resqcl 10300 . . . . 5 (𝐵 ∈ ℝ → (𝐵↑2) ∈ ℝ)
11 sqge0 10309 . . . . 5 (𝐵 ∈ ℝ → 0 ≤ (𝐵↑2))
12 absid 10783 . . . . 5 (((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) → (abs‘(𝐵↑2)) = (𝐵↑2))
1310, 11, 12syl2anc 406 . . . 4 (𝐵 ∈ ℝ → (abs‘(𝐵↑2)) = (𝐵↑2))
14 recn 7717 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
15 absexp 10791 . . . . 5 ((𝐵 ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘(𝐵↑2)) = ((abs‘𝐵)↑2))
1614, 6, 15sylancl 407 . . . 4 (𝐵 ∈ ℝ → (abs‘(𝐵↑2)) = ((abs‘𝐵)↑2))
1713, 16eqtr3d 2150 . . 3 (𝐵 ∈ ℝ → (𝐵↑2) = ((abs‘𝐵)↑2))
189, 17eqeqan12d 2131 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ ((abs‘𝐴)↑2) = ((abs‘𝐵)↑2)))
19 abscl 10763 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
20 absge0 10772 . . . . 5 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
2119, 20jca 302 . . . 4 (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
22 abscl 10763 . . . . 5 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ)
23 absge0 10772 . . . . 5 (𝐵 ∈ ℂ → 0 ≤ (abs‘𝐵))
2422, 23jca 302 . . . 4 (𝐵 ∈ ℂ → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
25 sq11 10305 . . . 4 ((((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵))) → (((abs‘𝐴)↑2) = ((abs‘𝐵)↑2) ↔ (abs‘𝐴) = (abs‘𝐵)))
2621, 24, 25syl2an 285 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴)↑2) = ((abs‘𝐵)↑2) ↔ (abs‘𝐴) = (abs‘𝐵)))
275, 14, 26syl2an 285 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((abs‘𝐴)↑2) = ((abs‘𝐵)↑2) ↔ (abs‘𝐴) = (abs‘𝐵)))
2818, 27bitrd 187 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ (abs‘𝐴) = (abs‘𝐵)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1314   ∈ wcel 1463   class class class wbr 3897  ‘cfv 5091  (class class class)co 5740  ℂcc 7582  ℝcr 7583  0cc0 7584   ≤ cle 7765  2c2 8728  ℕ0cn0 8928  ↑cexp 10232  abscabs 10709 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704 This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-rp 9391  df-seqfrec 10159  df-exp 10233  df-cj 10554  df-re 10555  df-im 10556  df-rsqrt 10710  df-abs 10711 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator