ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recan GIF version

Theorem recan 11253
Description: Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005.)
Assertion
Ref Expression
recan ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem recan
StepHypRef Expression
1 ax-1cn 7965 . . . . 5 1 ∈ ℂ
2 oveq1 5925 . . . . . . . 8 (𝑥 = 1 → (𝑥 · 𝐴) = (1 · 𝐴))
32fveq2d 5558 . . . . . . 7 (𝑥 = 1 → (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(1 · 𝐴)))
4 oveq1 5925 . . . . . . . 8 (𝑥 = 1 → (𝑥 · 𝐵) = (1 · 𝐵))
54fveq2d 5558 . . . . . . 7 (𝑥 = 1 → (ℜ‘(𝑥 · 𝐵)) = (ℜ‘(1 · 𝐵)))
63, 5eqeq12d 2208 . . . . . 6 (𝑥 = 1 → ((ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ (ℜ‘(1 · 𝐴)) = (ℜ‘(1 · 𝐵))))
76rspcv 2860 . . . . 5 (1 ∈ ℂ → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(1 · 𝐴)) = (ℜ‘(1 · 𝐵))))
81, 7ax-mp 5 . . . 4 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(1 · 𝐴)) = (ℜ‘(1 · 𝐵)))
9 negicn 8220 . . . . . 6 -i ∈ ℂ
10 oveq1 5925 . . . . . . . . 9 (𝑥 = -i → (𝑥 · 𝐴) = (-i · 𝐴))
1110fveq2d 5558 . . . . . . . 8 (𝑥 = -i → (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(-i · 𝐴)))
12 oveq1 5925 . . . . . . . . 9 (𝑥 = -i → (𝑥 · 𝐵) = (-i · 𝐵))
1312fveq2d 5558 . . . . . . . 8 (𝑥 = -i → (ℜ‘(𝑥 · 𝐵)) = (ℜ‘(-i · 𝐵)))
1411, 13eqeq12d 2208 . . . . . . 7 (𝑥 = -i → ((ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ (ℜ‘(-i · 𝐴)) = (ℜ‘(-i · 𝐵))))
1514rspcv 2860 . . . . . 6 (-i ∈ ℂ → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(-i · 𝐴)) = (ℜ‘(-i · 𝐵))))
169, 15ax-mp 5 . . . . 5 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(-i · 𝐴)) = (ℜ‘(-i · 𝐵)))
1716oveq2d 5934 . . . 4 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (i · (ℜ‘(-i · 𝐴))) = (i · (ℜ‘(-i · 𝐵))))
188, 17oveq12d 5936 . . 3 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))) = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵)))))
19 replim 11003 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
20 mullid 8017 . . . . . . . 8 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
2120eqcomd 2199 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 = (1 · 𝐴))
2221fveq2d 5558 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℜ‘(1 · 𝐴)))
23 imre 10995 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))
2423oveq2d 5934 . . . . . 6 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) = (i · (ℜ‘(-i · 𝐴))))
2522, 24oveq12d 5936 . . . . 5 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))))
2619, 25eqtrd 2226 . . . 4 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))))
27 replim 11003 . . . . 5 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
28 mullid 8017 . . . . . . . 8 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
2928eqcomd 2199 . . . . . . 7 (𝐵 ∈ ℂ → 𝐵 = (1 · 𝐵))
3029fveq2d 5558 . . . . . 6 (𝐵 ∈ ℂ → (ℜ‘𝐵) = (ℜ‘(1 · 𝐵)))
31 imre 10995 . . . . . . 7 (𝐵 ∈ ℂ → (ℑ‘𝐵) = (ℜ‘(-i · 𝐵)))
3231oveq2d 5934 . . . . . 6 (𝐵 ∈ ℂ → (i · (ℑ‘𝐵)) = (i · (ℜ‘(-i · 𝐵))))
3330, 32oveq12d 5936 . . . . 5 (𝐵 ∈ ℂ → ((ℜ‘𝐵) + (i · (ℑ‘𝐵))) = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵)))))
3427, 33eqtrd 2226 . . . 4 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵)))))
3526, 34eqeqan12d 2209 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))) = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵))))))
3618, 35imbitrrid 156 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → 𝐴 = 𝐵))
37 oveq2 5926 . . . 4 (𝐴 = 𝐵 → (𝑥 · 𝐴) = (𝑥 · 𝐵))
3837fveq2d 5558 . . 3 (𝐴 = 𝐵 → (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)))
3938ralrimivw 2568 . 2 (𝐴 = 𝐵 → ∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)))
4036, 39impbid1 142 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  cfv 5254  (class class class)co 5918  cc 7870  1c1 7873  ici 7874   + caddc 7875   · cmul 7877  -cneg 8191  cre 10984  cim 10985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-2 9041  df-cj 10986  df-re 10987  df-im 10988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator