ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recan GIF version

Theorem recan 11586
Description: Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005.)
Assertion
Ref Expression
recan ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem recan
StepHypRef Expression
1 ax-1cn 8060 . . . . 5 1 ∈ ℂ
2 oveq1 5981 . . . . . . . 8 (𝑥 = 1 → (𝑥 · 𝐴) = (1 · 𝐴))
32fveq2d 5607 . . . . . . 7 (𝑥 = 1 → (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(1 · 𝐴)))
4 oveq1 5981 . . . . . . . 8 (𝑥 = 1 → (𝑥 · 𝐵) = (1 · 𝐵))
54fveq2d 5607 . . . . . . 7 (𝑥 = 1 → (ℜ‘(𝑥 · 𝐵)) = (ℜ‘(1 · 𝐵)))
63, 5eqeq12d 2224 . . . . . 6 (𝑥 = 1 → ((ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ (ℜ‘(1 · 𝐴)) = (ℜ‘(1 · 𝐵))))
76rspcv 2883 . . . . 5 (1 ∈ ℂ → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(1 · 𝐴)) = (ℜ‘(1 · 𝐵))))
81, 7ax-mp 5 . . . 4 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(1 · 𝐴)) = (ℜ‘(1 · 𝐵)))
9 negicn 8315 . . . . . 6 -i ∈ ℂ
10 oveq1 5981 . . . . . . . . 9 (𝑥 = -i → (𝑥 · 𝐴) = (-i · 𝐴))
1110fveq2d 5607 . . . . . . . 8 (𝑥 = -i → (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(-i · 𝐴)))
12 oveq1 5981 . . . . . . . . 9 (𝑥 = -i → (𝑥 · 𝐵) = (-i · 𝐵))
1312fveq2d 5607 . . . . . . . 8 (𝑥 = -i → (ℜ‘(𝑥 · 𝐵)) = (ℜ‘(-i · 𝐵)))
1411, 13eqeq12d 2224 . . . . . . 7 (𝑥 = -i → ((ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ (ℜ‘(-i · 𝐴)) = (ℜ‘(-i · 𝐵))))
1514rspcv 2883 . . . . . 6 (-i ∈ ℂ → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(-i · 𝐴)) = (ℜ‘(-i · 𝐵))))
169, 15ax-mp 5 . . . . 5 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(-i · 𝐴)) = (ℜ‘(-i · 𝐵)))
1716oveq2d 5990 . . . 4 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (i · (ℜ‘(-i · 𝐴))) = (i · (ℜ‘(-i · 𝐵))))
188, 17oveq12d 5992 . . 3 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))) = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵)))))
19 replim 11336 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
20 mullid 8112 . . . . . . . 8 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
2120eqcomd 2215 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 = (1 · 𝐴))
2221fveq2d 5607 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℜ‘(1 · 𝐴)))
23 imre 11328 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))
2423oveq2d 5990 . . . . . 6 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) = (i · (ℜ‘(-i · 𝐴))))
2522, 24oveq12d 5992 . . . . 5 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))))
2619, 25eqtrd 2242 . . . 4 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))))
27 replim 11336 . . . . 5 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
28 mullid 8112 . . . . . . . 8 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
2928eqcomd 2215 . . . . . . 7 (𝐵 ∈ ℂ → 𝐵 = (1 · 𝐵))
3029fveq2d 5607 . . . . . 6 (𝐵 ∈ ℂ → (ℜ‘𝐵) = (ℜ‘(1 · 𝐵)))
31 imre 11328 . . . . . . 7 (𝐵 ∈ ℂ → (ℑ‘𝐵) = (ℜ‘(-i · 𝐵)))
3231oveq2d 5990 . . . . . 6 (𝐵 ∈ ℂ → (i · (ℑ‘𝐵)) = (i · (ℜ‘(-i · 𝐵))))
3330, 32oveq12d 5992 . . . . 5 (𝐵 ∈ ℂ → ((ℜ‘𝐵) + (i · (ℑ‘𝐵))) = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵)))))
3427, 33eqtrd 2242 . . . 4 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵)))))
3526, 34eqeqan12d 2225 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))) = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵))))))
3618, 35imbitrrid 156 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → 𝐴 = 𝐵))
37 oveq2 5982 . . . 4 (𝐴 = 𝐵 → (𝑥 · 𝐴) = (𝑥 · 𝐵))
3837fveq2d 5607 . . 3 (𝐴 = 𝐵 → (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)))
3938ralrimivw 2584 . 2 (𝐴 = 𝐵 → ∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)))
4036, 39impbid1 142 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wral 2488  cfv 5294  (class class class)co 5974  cc 7965  1c1 7968  ici 7969   + caddc 7970   · cmul 7972  -cneg 8286  cre 11317  cim 11318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-2 9137  df-cj 11319  df-re 11320  df-im 11321
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator