ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recan GIF version

Theorem recan 11102
Description: Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005.)
Assertion
Ref Expression
recan ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem recan
StepHypRef Expression
1 ax-1cn 7895 . . . . 5 1 ∈ ℂ
2 oveq1 5876 . . . . . . . 8 (𝑥 = 1 → (𝑥 · 𝐴) = (1 · 𝐴))
32fveq2d 5515 . . . . . . 7 (𝑥 = 1 → (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(1 · 𝐴)))
4 oveq1 5876 . . . . . . . 8 (𝑥 = 1 → (𝑥 · 𝐵) = (1 · 𝐵))
54fveq2d 5515 . . . . . . 7 (𝑥 = 1 → (ℜ‘(𝑥 · 𝐵)) = (ℜ‘(1 · 𝐵)))
63, 5eqeq12d 2192 . . . . . 6 (𝑥 = 1 → ((ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ (ℜ‘(1 · 𝐴)) = (ℜ‘(1 · 𝐵))))
76rspcv 2837 . . . . 5 (1 ∈ ℂ → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(1 · 𝐴)) = (ℜ‘(1 · 𝐵))))
81, 7ax-mp 5 . . . 4 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(1 · 𝐴)) = (ℜ‘(1 · 𝐵)))
9 negicn 8148 . . . . . 6 -i ∈ ℂ
10 oveq1 5876 . . . . . . . . 9 (𝑥 = -i → (𝑥 · 𝐴) = (-i · 𝐴))
1110fveq2d 5515 . . . . . . . 8 (𝑥 = -i → (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(-i · 𝐴)))
12 oveq1 5876 . . . . . . . . 9 (𝑥 = -i → (𝑥 · 𝐵) = (-i · 𝐵))
1312fveq2d 5515 . . . . . . . 8 (𝑥 = -i → (ℜ‘(𝑥 · 𝐵)) = (ℜ‘(-i · 𝐵)))
1411, 13eqeq12d 2192 . . . . . . 7 (𝑥 = -i → ((ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ (ℜ‘(-i · 𝐴)) = (ℜ‘(-i · 𝐵))))
1514rspcv 2837 . . . . . 6 (-i ∈ ℂ → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(-i · 𝐴)) = (ℜ‘(-i · 𝐵))))
169, 15ax-mp 5 . . . . 5 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(-i · 𝐴)) = (ℜ‘(-i · 𝐵)))
1716oveq2d 5885 . . . 4 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (i · (ℜ‘(-i · 𝐴))) = (i · (ℜ‘(-i · 𝐵))))
188, 17oveq12d 5887 . . 3 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))) = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵)))))
19 replim 10852 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
20 mulid2 7946 . . . . . . . 8 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
2120eqcomd 2183 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 = (1 · 𝐴))
2221fveq2d 5515 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℜ‘(1 · 𝐴)))
23 imre 10844 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))
2423oveq2d 5885 . . . . . 6 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) = (i · (ℜ‘(-i · 𝐴))))
2522, 24oveq12d 5887 . . . . 5 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))))
2619, 25eqtrd 2210 . . . 4 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))))
27 replim 10852 . . . . 5 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
28 mulid2 7946 . . . . . . . 8 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
2928eqcomd 2183 . . . . . . 7 (𝐵 ∈ ℂ → 𝐵 = (1 · 𝐵))
3029fveq2d 5515 . . . . . 6 (𝐵 ∈ ℂ → (ℜ‘𝐵) = (ℜ‘(1 · 𝐵)))
31 imre 10844 . . . . . . 7 (𝐵 ∈ ℂ → (ℑ‘𝐵) = (ℜ‘(-i · 𝐵)))
3231oveq2d 5885 . . . . . 6 (𝐵 ∈ ℂ → (i · (ℑ‘𝐵)) = (i · (ℜ‘(-i · 𝐵))))
3330, 32oveq12d 5887 . . . . 5 (𝐵 ∈ ℂ → ((ℜ‘𝐵) + (i · (ℑ‘𝐵))) = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵)))))
3427, 33eqtrd 2210 . . . 4 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵)))))
3526, 34eqeqan12d 2193 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))) = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵))))))
3618, 35syl5ibr 156 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → 𝐴 = 𝐵))
37 oveq2 5877 . . . 4 (𝐴 = 𝐵 → (𝑥 · 𝐴) = (𝑥 · 𝐵))
3837fveq2d 5515 . . 3 (𝐴 = 𝐵 → (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)))
3938ralrimivw 2551 . 2 (𝐴 = 𝐵 → ∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)))
4036, 39impbid1 142 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  cfv 5212  (class class class)co 5869  cc 7800  1c1 7803  ici 7804   + caddc 7805   · cmul 7807  -cneg 8119  cre 10833  cim 10834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-2 8967  df-cj 10835  df-re 10836  df-im 10837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator