| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preqlu | GIF version | ||
| Description: Two reals are equal if and only if their lower and upper cuts are. (Contributed by Jim Kingdon, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| preqlu | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 = 𝐵 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | npsspw 7597 | . . . . 5 ⊢ P ⊆ (𝒫 Q × 𝒫 Q) | |
| 2 | 1 | sseli 3191 | . . . 4 ⊢ (𝐴 ∈ P → 𝐴 ∈ (𝒫 Q × 𝒫 Q)) |
| 3 | 1st2nd2 6271 | . . . 4 ⊢ (𝐴 ∈ (𝒫 Q × 𝒫 Q) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (𝐴 ∈ P → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 5 | 1 | sseli 3191 | . . . 4 ⊢ (𝐵 ∈ P → 𝐵 ∈ (𝒫 Q × 𝒫 Q)) |
| 6 | 1st2nd2 6271 | . . . 4 ⊢ (𝐵 ∈ (𝒫 Q × 𝒫 Q) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ (𝐵 ∈ P → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) |
| 8 | 4, 7 | eqeqan12d 2222 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 = 𝐵 ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉)) |
| 9 | xp1st 6261 | . . . . 5 ⊢ (𝐴 ∈ (𝒫 Q × 𝒫 Q) → (1st ‘𝐴) ∈ 𝒫 Q) | |
| 10 | 2, 9 | syl 14 | . . . 4 ⊢ (𝐴 ∈ P → (1st ‘𝐴) ∈ 𝒫 Q) |
| 11 | xp2nd 6262 | . . . . 5 ⊢ (𝐴 ∈ (𝒫 Q × 𝒫 Q) → (2nd ‘𝐴) ∈ 𝒫 Q) | |
| 12 | 2, 11 | syl 14 | . . . 4 ⊢ (𝐴 ∈ P → (2nd ‘𝐴) ∈ 𝒫 Q) |
| 13 | opthg 4287 | . . . 4 ⊢ (((1st ‘𝐴) ∈ 𝒫 Q ∧ (2nd ‘𝐴) ∈ 𝒫 Q) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) | |
| 14 | 10, 12, 13 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ P → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) |
| 15 | 14 | adantr 276 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) |
| 16 | 8, 15 | bitrd 188 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 = 𝐵 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 𝒫 cpw 3618 〈cop 3638 × cxp 4678 ‘cfv 5277 1st c1st 6234 2nd c2nd 6235 Qcnq 7406 Pcnp 7417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3001 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-iota 5238 df-fun 5279 df-fv 5285 df-1st 6236 df-2nd 6237 df-inp 7592 |
| This theorem is referenced by: genpassg 7652 addnqpr 7687 mulnqpr 7703 distrprg 7714 1idpr 7718 ltexpri 7739 addcanprg 7742 recexprlemex 7763 aptipr 7767 |
| Copyright terms: Public domain | W3C validator |