ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqlu GIF version

Theorem preqlu 7556
Description: Two reals are equal if and only if their lower and upper cuts are. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
preqlu ((𝐴P𝐵P) → (𝐴 = 𝐵 ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))

Proof of Theorem preqlu
StepHypRef Expression
1 npsspw 7555 . . . . 5 P ⊆ (𝒫 Q × 𝒫 Q)
21sseli 3180 . . . 4 (𝐴P𝐴 ∈ (𝒫 Q × 𝒫 Q))
3 1st2nd2 6242 . . . 4 (𝐴 ∈ (𝒫 Q × 𝒫 Q) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
42, 3syl 14 . . 3 (𝐴P𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
51sseli 3180 . . . 4 (𝐵P𝐵 ∈ (𝒫 Q × 𝒫 Q))
6 1st2nd2 6242 . . . 4 (𝐵 ∈ (𝒫 Q × 𝒫 Q) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
75, 6syl 14 . . 3 (𝐵P𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
84, 7eqeqan12d 2212 . 2 ((𝐴P𝐵P) → (𝐴 = 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩))
9 xp1st 6232 . . . . 5 (𝐴 ∈ (𝒫 Q × 𝒫 Q) → (1st𝐴) ∈ 𝒫 Q)
102, 9syl 14 . . . 4 (𝐴P → (1st𝐴) ∈ 𝒫 Q)
11 xp2nd 6233 . . . . 5 (𝐴 ∈ (𝒫 Q × 𝒫 Q) → (2nd𝐴) ∈ 𝒫 Q)
122, 11syl 14 . . . 4 (𝐴P → (2nd𝐴) ∈ 𝒫 Q)
13 opthg 4272 . . . 4 (((1st𝐴) ∈ 𝒫 Q ∧ (2nd𝐴) ∈ 𝒫 Q) → (⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
1410, 12, 13syl2anc 411 . . 3 (𝐴P → (⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
1514adantr 276 . 2 ((𝐴P𝐵P) → (⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
168, 15bitrd 188 1 ((𝐴P𝐵P) → (𝐴 = 𝐵 ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  𝒫 cpw 3606  cop 3626   × cxp 4662  cfv 5259  1st c1st 6205  2nd c2nd 6206  Qcnq 7364  Pcnp 7375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fv 5267  df-1st 6207  df-2nd 6208  df-inp 7550
This theorem is referenced by:  genpassg  7610  addnqpr  7645  mulnqpr  7661  distrprg  7672  1idpr  7676  ltexpri  7697  addcanprg  7700  recexprlemex  7721  aptipr  7725
  Copyright terms: Public domain W3C validator