![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > preqlu | GIF version |
Description: Two reals are equal if and only if their lower and upper cuts are. (Contributed by Jim Kingdon, 11-Dec-2019.) |
Ref | Expression |
---|---|
preqlu | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 = 𝐵 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | npsspw 7500 | . . . . 5 ⊢ P ⊆ (𝒫 Q × 𝒫 Q) | |
2 | 1 | sseli 3166 | . . . 4 ⊢ (𝐴 ∈ P → 𝐴 ∈ (𝒫 Q × 𝒫 Q)) |
3 | 1st2nd2 6200 | . . . 4 ⊢ (𝐴 ∈ (𝒫 Q × 𝒫 Q) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ (𝐴 ∈ P → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
5 | 1 | sseli 3166 | . . . 4 ⊢ (𝐵 ∈ P → 𝐵 ∈ (𝒫 Q × 𝒫 Q)) |
6 | 1st2nd2 6200 | . . . 4 ⊢ (𝐵 ∈ (𝒫 Q × 𝒫 Q) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ (𝐵 ∈ P → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) |
8 | 4, 7 | eqeqan12d 2205 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 = 𝐵 ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉)) |
9 | xp1st 6190 | . . . . 5 ⊢ (𝐴 ∈ (𝒫 Q × 𝒫 Q) → (1st ‘𝐴) ∈ 𝒫 Q) | |
10 | 2, 9 | syl 14 | . . . 4 ⊢ (𝐴 ∈ P → (1st ‘𝐴) ∈ 𝒫 Q) |
11 | xp2nd 6191 | . . . . 5 ⊢ (𝐴 ∈ (𝒫 Q × 𝒫 Q) → (2nd ‘𝐴) ∈ 𝒫 Q) | |
12 | 2, 11 | syl 14 | . . . 4 ⊢ (𝐴 ∈ P → (2nd ‘𝐴) ∈ 𝒫 Q) |
13 | opthg 4256 | . . . 4 ⊢ (((1st ‘𝐴) ∈ 𝒫 Q ∧ (2nd ‘𝐴) ∈ 𝒫 Q) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) | |
14 | 10, 12, 13 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ P → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) |
15 | 14 | adantr 276 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) |
16 | 8, 15 | bitrd 188 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 = 𝐵 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 𝒫 cpw 3590 〈cop 3610 × cxp 4642 ‘cfv 5235 1st c1st 6163 2nd c2nd 6164 Qcnq 7309 Pcnp 7320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-sbc 2978 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-iota 5196 df-fun 5237 df-fv 5243 df-1st 6165 df-2nd 6166 df-inp 7495 |
This theorem is referenced by: genpassg 7555 addnqpr 7590 mulnqpr 7606 distrprg 7617 1idpr 7621 ltexpri 7642 addcanprg 7645 recexprlemex 7666 aptipr 7670 |
Copyright terms: Public domain | W3C validator |