ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqlu GIF version

Theorem preqlu 7532
Description: Two reals are equal if and only if their lower and upper cuts are. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
preqlu ((𝐴P𝐵P) → (𝐴 = 𝐵 ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))

Proof of Theorem preqlu
StepHypRef Expression
1 npsspw 7531 . . . . 5 P ⊆ (𝒫 Q × 𝒫 Q)
21sseli 3175 . . . 4 (𝐴P𝐴 ∈ (𝒫 Q × 𝒫 Q))
3 1st2nd2 6228 . . . 4 (𝐴 ∈ (𝒫 Q × 𝒫 Q) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
42, 3syl 14 . . 3 (𝐴P𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
51sseli 3175 . . . 4 (𝐵P𝐵 ∈ (𝒫 Q × 𝒫 Q))
6 1st2nd2 6228 . . . 4 (𝐵 ∈ (𝒫 Q × 𝒫 Q) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
75, 6syl 14 . . 3 (𝐵P𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
84, 7eqeqan12d 2209 . 2 ((𝐴P𝐵P) → (𝐴 = 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩))
9 xp1st 6218 . . . . 5 (𝐴 ∈ (𝒫 Q × 𝒫 Q) → (1st𝐴) ∈ 𝒫 Q)
102, 9syl 14 . . . 4 (𝐴P → (1st𝐴) ∈ 𝒫 Q)
11 xp2nd 6219 . . . . 5 (𝐴 ∈ (𝒫 Q × 𝒫 Q) → (2nd𝐴) ∈ 𝒫 Q)
122, 11syl 14 . . . 4 (𝐴P → (2nd𝐴) ∈ 𝒫 Q)
13 opthg 4267 . . . 4 (((1st𝐴) ∈ 𝒫 Q ∧ (2nd𝐴) ∈ 𝒫 Q) → (⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
1410, 12, 13syl2anc 411 . . 3 (𝐴P → (⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
1514adantr 276 . 2 ((𝐴P𝐵P) → (⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
168, 15bitrd 188 1 ((𝐴P𝐵P) → (𝐴 = 𝐵 ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  𝒫 cpw 3601  cop 3621   × cxp 4657  cfv 5254  1st c1st 6191  2nd c2nd 6192  Qcnq 7340  Pcnp 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fv 5262  df-1st 6193  df-2nd 6194  df-inp 7526
This theorem is referenced by:  genpassg  7586  addnqpr  7621  mulnqpr  7637  distrprg  7648  1idpr  7652  ltexpri  7673  addcanprg  7676  recexprlemex  7697  aptipr  7701
  Copyright terms: Public domain W3C validator