![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xneg11 | GIF version |
Description: Extended real version of neg11 8210. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xneg11 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 = -𝑒𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegeq 9829 | . . 3 ⊢ (-𝑒𝐴 = -𝑒𝐵 → -𝑒-𝑒𝐴 = -𝑒-𝑒𝐵) | |
2 | xnegneg 9835 | . . . 4 ⊢ (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴) | |
3 | xnegneg 9835 | . . . 4 ⊢ (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵) | |
4 | 2, 3 | eqeqan12d 2193 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒-𝑒𝐴 = -𝑒-𝑒𝐵 ↔ 𝐴 = 𝐵)) |
5 | 1, 4 | imbitrid 154 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 = -𝑒𝐵 → 𝐴 = 𝐵)) |
6 | xnegeq 9829 | . 2 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) | |
7 | 5, 6 | impbid1 142 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 = -𝑒𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ℝ*cxr 7993 -𝑒cxne 9771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-sub 8132 df-neg 8133 df-xneg 9774 |
This theorem is referenced by: xaddass2 9872 xrnegiso 11272 xrnegcon1d 11274 |
Copyright terms: Public domain | W3C validator |