ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xneg11 GIF version

Theorem xneg11 9991
Description: Extended real version of neg11 8358. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xneg11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 = -𝑒𝐵𝐴 = 𝐵))

Proof of Theorem xneg11
StepHypRef Expression
1 xnegeq 9984 . . 3 (-𝑒𝐴 = -𝑒𝐵 → -𝑒-𝑒𝐴 = -𝑒-𝑒𝐵)
2 xnegneg 9990 . . . 4 (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)
3 xnegneg 9990 . . . 4 (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵)
42, 3eqeqan12d 2223 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒-𝑒𝐴 = -𝑒-𝑒𝐵𝐴 = 𝐵))
51, 4imbitrid 154 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 = -𝑒𝐵𝐴 = 𝐵))
6 xnegeq 9984 . 2 (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵)
75, 6impbid1 142 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 = -𝑒𝐵𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  *cxr 8141  -𝑒cxne 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-sub 8280  df-neg 8281  df-xneg 9929
This theorem is referenced by:  xaddass2  10027  xrnegiso  11688  xrnegcon1d  11690
  Copyright terms: Public domain W3C validator