![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmcoeq | GIF version |
Description: Domain of a composition. (Contributed by NM, 19-Mar-1998.) |
Ref | Expression |
---|---|
dmcoeq | ⊢ (dom 𝐴 = ran 𝐵 → dom (𝐴 ∘ 𝐵) = dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 3079 | . 2 ⊢ (dom 𝐴 = ran 𝐵 → ran 𝐵 ⊆ dom 𝐴) | |
2 | dmcosseq 4704 | . 2 ⊢ (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴 ∘ 𝐵) = dom 𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (dom 𝐴 = ran 𝐵 → dom (𝐴 ∘ 𝐵) = dom 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ⊆ wss 2999 dom cdm 4438 ran crn 4439 ∘ ccom 4442 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-br 3846 df-opab 3900 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 |
This theorem is referenced by: rncoeq 4706 dfdm2 4965 funcocnv2 5278 |
Copyright terms: Public domain | W3C validator |