ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ima GIF version

Theorem 0ima 4990
Description: Image under the empty relation. (Contributed by FL, 11-Jan-2007.)
Assertion
Ref Expression
0ima (∅ “ 𝐴) = ∅

Proof of Theorem 0ima
StepHypRef Expression
1 imassrn 4983 . . 3 (∅ “ 𝐴) ⊆ ran ∅
2 rn0 4885 . . 3 ran ∅ = ∅
31, 2sseqtri 3191 . 2 (∅ “ 𝐴) ⊆ ∅
4 0ss 3463 . 2 ∅ ⊆ (∅ “ 𝐴)
53, 4eqssi 3173 1 (∅ “ 𝐴) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1353  c0 3424  ran crn 4629  cima 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator