ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ima GIF version

Theorem 0ima 5048
Description: Image under the empty relation. (Contributed by FL, 11-Jan-2007.)
Assertion
Ref Expression
0ima (∅ “ 𝐴) = ∅

Proof of Theorem 0ima
StepHypRef Expression
1 imassrn 5039 . . 3 (∅ “ 𝐴) ⊆ ran ∅
2 rn0 4940 . . 3 ran ∅ = ∅
31, 2sseqtri 3229 . 2 (∅ “ 𝐴) ⊆ ∅
4 0ss 3501 . 2 ∅ ⊆ (∅ “ 𝐴)
53, 4eqssi 3211 1 (∅ “ 𝐴) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1373  c0 3462  ran crn 4681  cima 4683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-br 4049  df-opab 4111  df-xp 4686  df-cnv 4688  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator