| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unirnioo | GIF version | ||
| Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.) |
| Ref | Expression |
|---|---|
| unirnioo | ⊢ ℝ = ∪ ran (,) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioomax 10069 | . . . 4 ⊢ (-∞(,)+∞) = ℝ | |
| 2 | ioof 10092 | . . . . . 6 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 3 | ffn 5424 | . . . . . 6 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (,) Fn (ℝ* × ℝ*) |
| 5 | mnfxr 8128 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
| 6 | pnfxr 8124 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
| 7 | fnovrn 6093 | . . . . 5 ⊢ (((,) Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,)) | |
| 8 | 4, 5, 6, 7 | mp3an 1349 | . . . 4 ⊢ (-∞(,)+∞) ∈ ran (,) |
| 9 | 1, 8 | eqeltrri 2278 | . . 3 ⊢ ℝ ∈ ran (,) |
| 10 | elssuni 3877 | . . 3 ⊢ (ℝ ∈ ran (,) → ℝ ⊆ ∪ ran (,)) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ ℝ ⊆ ∪ ran (,) |
| 12 | frn 5433 | . . . 4 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ) | |
| 13 | 2, 12 | ax-mp 5 | . . 3 ⊢ ran (,) ⊆ 𝒫 ℝ |
| 14 | sspwuni 4011 | . . 3 ⊢ (ran (,) ⊆ 𝒫 ℝ ↔ ∪ ran (,) ⊆ ℝ) | |
| 15 | 13, 14 | mpbi 145 | . 2 ⊢ ∪ ran (,) ⊆ ℝ |
| 16 | 11, 15 | eqssi 3208 | 1 ⊢ ℝ = ∪ ran (,) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 ⊆ wss 3165 𝒫 cpw 3615 ∪ cuni 3849 × cxp 4672 ran crn 4675 Fn wfn 5265 ⟶wf 5266 (class class class)co 5943 ℝcr 7923 +∞cpnf 8103 -∞cmnf 8104 ℝ*cxr 8105 (,)cioo 10009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-ioo 10013 |
| This theorem is referenced by: uniretop 14968 tgioo 14997 |
| Copyright terms: Public domain | W3C validator |