ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supclti GIF version

Theorem supclti 6963
Description: A supremum belongs to its base class (closure law). See also supubti 6964 and suplubti 6965. (Contributed by Jim Kingdon, 24-Nov-2021.)
Hypotheses
Ref Expression
supmoti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
supclti.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Assertion
Ref Expression
supclti (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
Distinct variable groups:   𝑢,𝐴,𝑣,𝑥   𝑦,𝐴,𝑥,𝑧   𝑥,𝐵,𝑦,𝑧   𝑢,𝑅,𝑣,𝑥   𝑦,𝑅,𝑧   𝜑,𝑢,𝑣,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐵(𝑣,𝑢)

Proof of Theorem supclti
StepHypRef Expression
1 supmoti.ti . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
2 supclti.2 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
31, 2supval2ti 6960 . 2 (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
41, 2supeuti 6959 . . 3 (𝜑 → ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
5 riotacl 5812 . . 3 (∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ∈ 𝐴)
64, 5syl 14 . 2 (𝜑 → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ∈ 𝐴)
73, 6eqeltrd 2243 1 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 2136  wral 2444  wrex 2445  ∃!wreu 2446   class class class wbr 3982  crio 5797  supcsup 6947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-riota 5798  df-sup 6949
This theorem is referenced by:  suplub2ti  6966  supelti  6967  supisoti  6975  infclti  6988  inflbti  6989  infglbti  6990  suprubex  8846  suprleubex  8849  sup3exmid  8852  suprzclex  9289  supminfex  9535  maxleast  11155  zsupcl  11880  dvdslegcd  11897
  Copyright terms: Public domain W3C validator