| Step | Hyp | Ref
 | Expression | 
| 1 |   | eqid 2196 | 
. . . 4
⊢
(Base‘𝑆) =
(Base‘𝑆) | 
| 2 |   | eqid 2196 | 
. . . 4
⊢
(Base‘𝑇) =
(Base‘𝑇) | 
| 3 | 1, 2 | ghmf 13377 | 
. . 3
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) | 
| 4 | 3 | frnd 5417 | 
. 2
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ⊆ (Base‘𝑇)) | 
| 5 |   | ghmgrp1 13375 | 
. . . . . 6
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | 
| 6 |   | eqid 2196 | 
. . . . . . 7
⊢
(0g‘𝑆) = (0g‘𝑆) | 
| 7 | 1, 6 | grpidcl 13161 | 
. . . . . 6
⊢ (𝑆 ∈ Grp →
(0g‘𝑆)
∈ (Base‘𝑆)) | 
| 8 | 5, 7 | syl 14 | 
. . . . 5
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (0g‘𝑆) ∈ (Base‘𝑆)) | 
| 9 | 3 | fdmd 5414 | 
. . . . 5
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → dom 𝐹 = (Base‘𝑆)) | 
| 10 | 8, 9 | eleqtrrd 2276 | 
. . . 4
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (0g‘𝑆) ∈ dom 𝐹) | 
| 11 |   | elex2 2779 | 
. . . 4
⊢
((0g‘𝑆) ∈ dom 𝐹 → ∃𝑗 𝑗 ∈ dom 𝐹) | 
| 12 | 10, 11 | syl 14 | 
. . 3
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∃𝑗 𝑗 ∈ dom 𝐹) | 
| 13 |   | dmmrnm 4885 | 
. . 3
⊢
(∃𝑗 𝑗 ∈ dom 𝐹 ↔ ∃𝑗 𝑗 ∈ ran 𝐹) | 
| 14 | 12, 13 | sylib 122 | 
. 2
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∃𝑗 𝑗 ∈ ran 𝐹) | 
| 15 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(+g‘𝑆) = (+g‘𝑆) | 
| 16 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(+g‘𝑇) = (+g‘𝑇) | 
| 17 | 1, 15, 16 | ghmlin 13378 | 
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g‘𝑆)𝑎)) = ((𝐹‘𝑐)(+g‘𝑇)(𝐹‘𝑎))) | 
| 18 | 3 | ffnd 5408 | 
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 Fn (Base‘𝑆)) | 
| 19 | 18 | 3ad2ant1 1020 | 
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → 𝐹 Fn (Base‘𝑆)) | 
| 20 | 1, 15 | grpcl 13140 | 
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Grp ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝑐(+g‘𝑆)𝑎) ∈ (Base‘𝑆)) | 
| 21 | 5, 20 | syl3an1 1282 | 
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝑐(+g‘𝑆)𝑎) ∈ (Base‘𝑆)) | 
| 22 |   | fnfvelrn 5694 | 
. . . . . . . . . 10
⊢ ((𝐹 Fn (Base‘𝑆) ∧ (𝑐(+g‘𝑆)𝑎) ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g‘𝑆)𝑎)) ∈ ran 𝐹) | 
| 23 | 19, 21, 22 | syl2anc 411 | 
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g‘𝑆)𝑎)) ∈ ran 𝐹) | 
| 24 | 17, 23 | eqeltrrd 2274 | 
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → ((𝐹‘𝑐)(+g‘𝑇)(𝐹‘𝑎)) ∈ ran 𝐹) | 
| 25 | 24 | 3expia 1207 | 
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝑎 ∈ (Base‘𝑆) → ((𝐹‘𝑐)(+g‘𝑇)(𝐹‘𝑎)) ∈ ran 𝐹)) | 
| 26 | 25 | ralrimiv 2569 | 
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ∀𝑎 ∈ (Base‘𝑆)((𝐹‘𝑐)(+g‘𝑇)(𝐹‘𝑎)) ∈ ran 𝐹) | 
| 27 |   | oveq2 5930 | 
. . . . . . . . . 10
⊢ (𝑏 = (𝐹‘𝑎) → ((𝐹‘𝑐)(+g‘𝑇)𝑏) = ((𝐹‘𝑐)(+g‘𝑇)(𝐹‘𝑎))) | 
| 28 | 27 | eleq1d 2265 | 
. . . . . . . . 9
⊢ (𝑏 = (𝐹‘𝑎) → (((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹 ↔ ((𝐹‘𝑐)(+g‘𝑇)(𝐹‘𝑎)) ∈ ran 𝐹)) | 
| 29 | 28 | ralrn 5700 | 
. . . . . . . 8
⊢ (𝐹 Fn (Base‘𝑆) → (∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹‘𝑐)(+g‘𝑇)(𝐹‘𝑎)) ∈ ran 𝐹)) | 
| 30 | 18, 29 | syl 14 | 
. . . . . . 7
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹‘𝑐)(+g‘𝑇)(𝐹‘𝑎)) ∈ ran 𝐹)) | 
| 31 | 30 | adantr 276 | 
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹‘𝑐)(+g‘𝑇)(𝐹‘𝑎)) ∈ ran 𝐹)) | 
| 32 | 26, 31 | mpbird 167 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹) | 
| 33 |   | eqid 2196 | 
. . . . . . 7
⊢
(invg‘𝑆) = (invg‘𝑆) | 
| 34 |   | eqid 2196 | 
. . . . . . 7
⊢
(invg‘𝑇) = (invg‘𝑇) | 
| 35 | 1, 33, 34 | ghminv 13380 | 
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘((invg‘𝑆)‘𝑐)) = ((invg‘𝑇)‘(𝐹‘𝑐))) | 
| 36 | 18 | adantr 276 | 
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → 𝐹 Fn (Base‘𝑆)) | 
| 37 | 1, 33 | grpinvcl 13180 | 
. . . . . . . 8
⊢ ((𝑆 ∈ Grp ∧ 𝑐 ∈ (Base‘𝑆)) →
((invg‘𝑆)‘𝑐) ∈ (Base‘𝑆)) | 
| 38 | 5, 37 | sylan 283 | 
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg‘𝑆)‘𝑐) ∈ (Base‘𝑆)) | 
| 39 |   | fnfvelrn 5694 | 
. . . . . . 7
⊢ ((𝐹 Fn (Base‘𝑆) ∧
((invg‘𝑆)‘𝑐) ∈ (Base‘𝑆)) → (𝐹‘((invg‘𝑆)‘𝑐)) ∈ ran 𝐹) | 
| 40 | 36, 38, 39 | syl2anc 411 | 
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘((invg‘𝑆)‘𝑐)) ∈ ran 𝐹) | 
| 41 | 35, 40 | eqeltrrd 2274 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg‘𝑇)‘(𝐹‘𝑐)) ∈ ran 𝐹) | 
| 42 | 32, 41 | jca 306 | 
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘(𝐹‘𝑐)) ∈ ran 𝐹)) | 
| 43 | 42 | ralrimiva 2570 | 
. . 3
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘(𝐹‘𝑐)) ∈ ran 𝐹)) | 
| 44 |   | oveq1 5929 | 
. . . . . . . 8
⊢ (𝑎 = (𝐹‘𝑐) → (𝑎(+g‘𝑇)𝑏) = ((𝐹‘𝑐)(+g‘𝑇)𝑏)) | 
| 45 | 44 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝑎 = (𝐹‘𝑐) → ((𝑎(+g‘𝑇)𝑏) ∈ ran 𝐹 ↔ ((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹)) | 
| 46 | 45 | ralbidv 2497 | 
. . . . . 6
⊢ (𝑎 = (𝐹‘𝑐) → (∀𝑏 ∈ ran 𝐹(𝑎(+g‘𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹)) | 
| 47 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑎 = (𝐹‘𝑐) → ((invg‘𝑇)‘𝑎) = ((invg‘𝑇)‘(𝐹‘𝑐))) | 
| 48 | 47 | eleq1d 2265 | 
. . . . . 6
⊢ (𝑎 = (𝐹‘𝑐) → (((invg‘𝑇)‘𝑎) ∈ ran 𝐹 ↔ ((invg‘𝑇)‘(𝐹‘𝑐)) ∈ ran 𝐹)) | 
| 49 | 46, 48 | anbi12d 473 | 
. . . . 5
⊢ (𝑎 = (𝐹‘𝑐) → ((∀𝑏 ∈ ran 𝐹(𝑎(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘𝑎) ∈ ran 𝐹) ↔ (∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘(𝐹‘𝑐)) ∈ ran 𝐹))) | 
| 50 | 49 | ralrn 5700 | 
. . . 4
⊢ (𝐹 Fn (Base‘𝑆) → (∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘𝑎) ∈ ran 𝐹) ↔ ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘(𝐹‘𝑐)) ∈ ran 𝐹))) | 
| 51 | 18, 50 | syl 14 | 
. . 3
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘𝑎) ∈ ran 𝐹) ↔ ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘(𝐹‘𝑐)) ∈ ran 𝐹))) | 
| 52 | 43, 51 | mpbird 167 | 
. 2
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘𝑎) ∈ ran 𝐹)) | 
| 53 |   | ghmgrp2 13376 | 
. . 3
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) | 
| 54 | 2, 16, 34 | issubg2m 13319 | 
. . 3
⊢ (𝑇 ∈ Grp → (ran 𝐹 ∈ (SubGrp‘𝑇) ↔ (ran 𝐹 ⊆ (Base‘𝑇) ∧ ∃𝑗 𝑗 ∈ ran 𝐹 ∧ ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘𝑎) ∈ ran 𝐹)))) | 
| 55 | 53, 54 | syl 14 | 
. 2
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (ran 𝐹 ∈ (SubGrp‘𝑇) ↔ (ran 𝐹 ⊆ (Base‘𝑇) ∧ ∃𝑗 𝑗 ∈ ran 𝐹 ∧ ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘𝑎) ∈ ran 𝐹)))) | 
| 56 | 4, 14, 52, 55 | mpbir3and 1182 | 
1
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ∈ (SubGrp‘𝑇)) |