Step | Hyp | Ref
| Expression |
1 | | eqid 2193 |
. . . 4
⊢
(Base‘𝑆) =
(Base‘𝑆) |
2 | | eqid 2193 |
. . . 4
⊢
(Base‘𝑇) =
(Base‘𝑇) |
3 | 1, 2 | ghmf 13317 |
. . 3
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
4 | 3 | frnd 5413 |
. 2
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ⊆ (Base‘𝑇)) |
5 | | ghmgrp1 13315 |
. . . . . 6
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) |
6 | | eqid 2193 |
. . . . . . 7
⊢
(0g‘𝑆) = (0g‘𝑆) |
7 | 1, 6 | grpidcl 13101 |
. . . . . 6
⊢ (𝑆 ∈ Grp →
(0g‘𝑆)
∈ (Base‘𝑆)) |
8 | 5, 7 | syl 14 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (0g‘𝑆) ∈ (Base‘𝑆)) |
9 | 3 | fdmd 5410 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → dom 𝐹 = (Base‘𝑆)) |
10 | 8, 9 | eleqtrrd 2273 |
. . . 4
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (0g‘𝑆) ∈ dom 𝐹) |
11 | | elex2 2776 |
. . . 4
⊢
((0g‘𝑆) ∈ dom 𝐹 → ∃𝑗 𝑗 ∈ dom 𝐹) |
12 | 10, 11 | syl 14 |
. . 3
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∃𝑗 𝑗 ∈ dom 𝐹) |
13 | | dmmrnm 4881 |
. . 3
⊢
(∃𝑗 𝑗 ∈ dom 𝐹 ↔ ∃𝑗 𝑗 ∈ ran 𝐹) |
14 | 12, 13 | sylib 122 |
. 2
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∃𝑗 𝑗 ∈ ran 𝐹) |
15 | | eqid 2193 |
. . . . . . . . . 10
⊢
(+g‘𝑆) = (+g‘𝑆) |
16 | | eqid 2193 |
. . . . . . . . . 10
⊢
(+g‘𝑇) = (+g‘𝑇) |
17 | 1, 15, 16 | ghmlin 13318 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g‘𝑆)𝑎)) = ((𝐹‘𝑐)(+g‘𝑇)(𝐹‘𝑎))) |
18 | 3 | ffnd 5404 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 Fn (Base‘𝑆)) |
19 | 18 | 3ad2ant1 1020 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → 𝐹 Fn (Base‘𝑆)) |
20 | 1, 15 | grpcl 13080 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Grp ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝑐(+g‘𝑆)𝑎) ∈ (Base‘𝑆)) |
21 | 5, 20 | syl3an1 1282 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝑐(+g‘𝑆)𝑎) ∈ (Base‘𝑆)) |
22 | | fnfvelrn 5690 |
. . . . . . . . . 10
⊢ ((𝐹 Fn (Base‘𝑆) ∧ (𝑐(+g‘𝑆)𝑎) ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g‘𝑆)𝑎)) ∈ ran 𝐹) |
23 | 19, 21, 22 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g‘𝑆)𝑎)) ∈ ran 𝐹) |
24 | 17, 23 | eqeltrrd 2271 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → ((𝐹‘𝑐)(+g‘𝑇)(𝐹‘𝑎)) ∈ ran 𝐹) |
25 | 24 | 3expia 1207 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝑎 ∈ (Base‘𝑆) → ((𝐹‘𝑐)(+g‘𝑇)(𝐹‘𝑎)) ∈ ran 𝐹)) |
26 | 25 | ralrimiv 2566 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ∀𝑎 ∈ (Base‘𝑆)((𝐹‘𝑐)(+g‘𝑇)(𝐹‘𝑎)) ∈ ran 𝐹) |
27 | | oveq2 5926 |
. . . . . . . . . 10
⊢ (𝑏 = (𝐹‘𝑎) → ((𝐹‘𝑐)(+g‘𝑇)𝑏) = ((𝐹‘𝑐)(+g‘𝑇)(𝐹‘𝑎))) |
28 | 27 | eleq1d 2262 |
. . . . . . . . 9
⊢ (𝑏 = (𝐹‘𝑎) → (((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹 ↔ ((𝐹‘𝑐)(+g‘𝑇)(𝐹‘𝑎)) ∈ ran 𝐹)) |
29 | 28 | ralrn 5696 |
. . . . . . . 8
⊢ (𝐹 Fn (Base‘𝑆) → (∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹‘𝑐)(+g‘𝑇)(𝐹‘𝑎)) ∈ ran 𝐹)) |
30 | 18, 29 | syl 14 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹‘𝑐)(+g‘𝑇)(𝐹‘𝑎)) ∈ ran 𝐹)) |
31 | 30 | adantr 276 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹‘𝑐)(+g‘𝑇)(𝐹‘𝑎)) ∈ ran 𝐹)) |
32 | 26, 31 | mpbird 167 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹) |
33 | | eqid 2193 |
. . . . . . 7
⊢
(invg‘𝑆) = (invg‘𝑆) |
34 | | eqid 2193 |
. . . . . . 7
⊢
(invg‘𝑇) = (invg‘𝑇) |
35 | 1, 33, 34 | ghminv 13320 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘((invg‘𝑆)‘𝑐)) = ((invg‘𝑇)‘(𝐹‘𝑐))) |
36 | 18 | adantr 276 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → 𝐹 Fn (Base‘𝑆)) |
37 | 1, 33 | grpinvcl 13120 |
. . . . . . . 8
⊢ ((𝑆 ∈ Grp ∧ 𝑐 ∈ (Base‘𝑆)) →
((invg‘𝑆)‘𝑐) ∈ (Base‘𝑆)) |
38 | 5, 37 | sylan 283 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg‘𝑆)‘𝑐) ∈ (Base‘𝑆)) |
39 | | fnfvelrn 5690 |
. . . . . . 7
⊢ ((𝐹 Fn (Base‘𝑆) ∧
((invg‘𝑆)‘𝑐) ∈ (Base‘𝑆)) → (𝐹‘((invg‘𝑆)‘𝑐)) ∈ ran 𝐹) |
40 | 36, 38, 39 | syl2anc 411 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘((invg‘𝑆)‘𝑐)) ∈ ran 𝐹) |
41 | 35, 40 | eqeltrrd 2271 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg‘𝑇)‘(𝐹‘𝑐)) ∈ ran 𝐹) |
42 | 32, 41 | jca 306 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘(𝐹‘𝑐)) ∈ ran 𝐹)) |
43 | 42 | ralrimiva 2567 |
. . 3
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘(𝐹‘𝑐)) ∈ ran 𝐹)) |
44 | | oveq1 5925 |
. . . . . . . 8
⊢ (𝑎 = (𝐹‘𝑐) → (𝑎(+g‘𝑇)𝑏) = ((𝐹‘𝑐)(+g‘𝑇)𝑏)) |
45 | 44 | eleq1d 2262 |
. . . . . . 7
⊢ (𝑎 = (𝐹‘𝑐) → ((𝑎(+g‘𝑇)𝑏) ∈ ran 𝐹 ↔ ((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹)) |
46 | 45 | ralbidv 2494 |
. . . . . 6
⊢ (𝑎 = (𝐹‘𝑐) → (∀𝑏 ∈ ran 𝐹(𝑎(+g‘𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹)) |
47 | | fveq2 5554 |
. . . . . . 7
⊢ (𝑎 = (𝐹‘𝑐) → ((invg‘𝑇)‘𝑎) = ((invg‘𝑇)‘(𝐹‘𝑐))) |
48 | 47 | eleq1d 2262 |
. . . . . 6
⊢ (𝑎 = (𝐹‘𝑐) → (((invg‘𝑇)‘𝑎) ∈ ran 𝐹 ↔ ((invg‘𝑇)‘(𝐹‘𝑐)) ∈ ran 𝐹)) |
49 | 46, 48 | anbi12d 473 |
. . . . 5
⊢ (𝑎 = (𝐹‘𝑐) → ((∀𝑏 ∈ ran 𝐹(𝑎(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘𝑎) ∈ ran 𝐹) ↔ (∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘(𝐹‘𝑐)) ∈ ran 𝐹))) |
50 | 49 | ralrn 5696 |
. . . 4
⊢ (𝐹 Fn (Base‘𝑆) → (∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘𝑎) ∈ ran 𝐹) ↔ ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘(𝐹‘𝑐)) ∈ ran 𝐹))) |
51 | 18, 50 | syl 14 |
. . 3
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘𝑎) ∈ ran 𝐹) ↔ ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹‘𝑐)(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘(𝐹‘𝑐)) ∈ ran 𝐹))) |
52 | 43, 51 | mpbird 167 |
. 2
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘𝑎) ∈ ran 𝐹)) |
53 | | ghmgrp2 13316 |
. . 3
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) |
54 | 2, 16, 34 | issubg2m 13259 |
. . 3
⊢ (𝑇 ∈ Grp → (ran 𝐹 ∈ (SubGrp‘𝑇) ↔ (ran 𝐹 ⊆ (Base‘𝑇) ∧ ∃𝑗 𝑗 ∈ ran 𝐹 ∧ ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘𝑎) ∈ ran 𝐹)))) |
55 | 53, 54 | syl 14 |
. 2
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (ran 𝐹 ∈ (SubGrp‘𝑇) ↔ (ran 𝐹 ⊆ (Base‘𝑇) ∧ ∃𝑗 𝑗 ∈ ran 𝐹 ∧ ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g‘𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg‘𝑇)‘𝑎) ∈ ran 𝐹)))) |
56 | 4, 14, 52, 55 | mpbir3and 1182 |
1
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ∈ (SubGrp‘𝑇)) |