| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnntri | GIF version | ||
| Description: Property of the preimage of an interior. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| cncls2i.1 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| cnntri | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 14673 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → 𝐽 ∈ Top) |
| 3 | cnvimass 5045 | . . 3 ⊢ (◡𝐹 “ 𝑆) ⊆ dom 𝐹 | |
| 4 | eqid 2205 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 5 | cncls2i.1 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
| 6 | 4, 5 | cnf 14676 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶𝑌) |
| 7 | 6 | fdmd 5432 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → dom 𝐹 = ∪ 𝐽) |
| 8 | 7 | adantr 276 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → dom 𝐹 = ∪ 𝐽) |
| 9 | 3, 8 | sseqtrid 3243 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ 𝑆) ⊆ ∪ 𝐽) |
| 10 | cntop2 14674 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 11 | 5 | ntropn 14589 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ∈ 𝐾) |
| 12 | 10, 11 | sylan 283 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ∈ 𝐾) |
| 13 | cnima 14692 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ((int‘𝐾)‘𝑆) ∈ 𝐾) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽) | |
| 14 | 12, 13 | syldan 282 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽) |
| 15 | 5 | ntrss2 14593 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ⊆ 𝑆) |
| 16 | 10, 15 | sylan 283 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ⊆ 𝑆) |
| 17 | imass2 5058 | . . 3 ⊢ (((int‘𝐾)‘𝑆) ⊆ 𝑆 → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (◡𝐹 “ 𝑆)) | |
| 18 | 16, 17 | syl 14 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (◡𝐹 “ 𝑆)) |
| 19 | 4 | ssntr 14594 | . 2 ⊢ (((𝐽 ∈ Top ∧ (◡𝐹 “ 𝑆) ⊆ ∪ 𝐽) ∧ ((◡𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽 ∧ (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (◡𝐹 “ 𝑆))) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
| 20 | 2, 9, 14, 18, 19 | syl22anc 1251 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 ⊆ wss 3166 ∪ cuni 3850 ◡ccnv 4674 dom cdm 4675 “ cima 4678 ‘cfv 5271 (class class class)co 5944 Topctop 14469 intcnt 14565 Cn ccn 14657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-map 6737 df-top 14470 df-topon 14483 df-ntr 14568 df-cn 14660 |
| This theorem is referenced by: cnntr 14697 hmeontr 14785 |
| Copyright terms: Public domain | W3C validator |