![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnntri | GIF version |
Description: Property of the preimage of an interior. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
cncls2i.1 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
cnntri | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntop1 14369 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
2 | 1 | adantr 276 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → 𝐽 ∈ Top) |
3 | cnvimass 5028 | . . 3 ⊢ (◡𝐹 “ 𝑆) ⊆ dom 𝐹 | |
4 | eqid 2193 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
5 | cncls2i.1 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
6 | 4, 5 | cnf 14372 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶𝑌) |
7 | 6 | fdmd 5410 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → dom 𝐹 = ∪ 𝐽) |
8 | 7 | adantr 276 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → dom 𝐹 = ∪ 𝐽) |
9 | 3, 8 | sseqtrid 3229 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ 𝑆) ⊆ ∪ 𝐽) |
10 | cntop2 14370 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
11 | 5 | ntropn 14285 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ∈ 𝐾) |
12 | 10, 11 | sylan 283 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ∈ 𝐾) |
13 | cnima 14388 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ((int‘𝐾)‘𝑆) ∈ 𝐾) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽) | |
14 | 12, 13 | syldan 282 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽) |
15 | 5 | ntrss2 14289 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ⊆ 𝑆) |
16 | 10, 15 | sylan 283 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ⊆ 𝑆) |
17 | imass2 5041 | . . 3 ⊢ (((int‘𝐾)‘𝑆) ⊆ 𝑆 → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (◡𝐹 “ 𝑆)) | |
18 | 16, 17 | syl 14 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (◡𝐹 “ 𝑆)) |
19 | 4 | ssntr 14290 | . 2 ⊢ (((𝐽 ∈ Top ∧ (◡𝐹 “ 𝑆) ⊆ ∪ 𝐽) ∧ ((◡𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽 ∧ (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (◡𝐹 “ 𝑆))) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
20 | 2, 9, 14, 18, 19 | syl22anc 1250 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ⊆ wss 3153 ∪ cuni 3835 ◡ccnv 4658 dom cdm 4659 “ cima 4662 ‘cfv 5254 (class class class)co 5918 Topctop 14165 intcnt 14261 Cn ccn 14353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-map 6704 df-top 14166 df-topon 14179 df-ntr 14264 df-cn 14356 |
This theorem is referenced by: cnntr 14393 hmeontr 14481 |
Copyright terms: Public domain | W3C validator |