ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnntri GIF version

Theorem cnntri 14811
Description: Property of the preimage of an interior. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
cncls2i.1 𝑌 = 𝐾
Assertion
Ref Expression
cnntri ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → (𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(𝐹𝑆)))

Proof of Theorem cnntri
StepHypRef Expression
1 cntop1 14788 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
21adantr 276 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → 𝐽 ∈ Top)
3 cnvimass 5064 . . 3 (𝐹𝑆) ⊆ dom 𝐹
4 eqid 2207 . . . . . 6 𝐽 = 𝐽
5 cncls2i.1 . . . . . 6 𝑌 = 𝐾
64, 5cnf 14791 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝑌)
76fdmd 5452 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → dom 𝐹 = 𝐽)
87adantr 276 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → dom 𝐹 = 𝐽)
93, 8sseqtrid 3251 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → (𝐹𝑆) ⊆ 𝐽)
10 cntop2 14789 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
115ntropn 14704 . . . 4 ((𝐾 ∈ Top ∧ 𝑆𝑌) → ((int‘𝐾)‘𝑆) ∈ 𝐾)
1210, 11sylan 283 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → ((int‘𝐾)‘𝑆) ∈ 𝐾)
13 cnima 14807 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ((int‘𝐾)‘𝑆) ∈ 𝐾) → (𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽)
1412, 13syldan 282 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → (𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽)
155ntrss2 14708 . . . 4 ((𝐾 ∈ Top ∧ 𝑆𝑌) → ((int‘𝐾)‘𝑆) ⊆ 𝑆)
1610, 15sylan 283 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → ((int‘𝐾)‘𝑆) ⊆ 𝑆)
17 imass2 5077 . . 3 (((int‘𝐾)‘𝑆) ⊆ 𝑆 → (𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (𝐹𝑆))
1816, 17syl 14 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → (𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (𝐹𝑆))
194ssntr 14709 . 2 (((𝐽 ∈ Top ∧ (𝐹𝑆) ⊆ 𝐽) ∧ ((𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽 ∧ (𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (𝐹𝑆))) → (𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(𝐹𝑆)))
202, 9, 14, 18, 19syl22anc 1251 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → (𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(𝐹𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  wss 3174   cuni 3864  ccnv 4692  dom cdm 4693  cima 4696  cfv 5290  (class class class)co 5967  Topctop 14584  intcnt 14680   Cn ccn 14772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-top 14585  df-topon 14598  df-ntr 14683  df-cn 14775
This theorem is referenced by:  cnntr  14812  hmeontr  14900
  Copyright terms: Public domain W3C validator