Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnntri GIF version

Theorem cnntri 12430
 Description: Property of the preimage of an interior. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
cncls2i.1 𝑌 = 𝐾
Assertion
Ref Expression
cnntri ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → (𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(𝐹𝑆)))

Proof of Theorem cnntri
StepHypRef Expression
1 cntop1 12407 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
21adantr 274 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → 𝐽 ∈ Top)
3 cnvimass 4909 . . 3 (𝐹𝑆) ⊆ dom 𝐹
4 eqid 2140 . . . . . 6 𝐽 = 𝐽
5 cncls2i.1 . . . . . 6 𝑌 = 𝐾
64, 5cnf 12410 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝑌)
76fdmd 5286 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → dom 𝐹 = 𝐽)
87adantr 274 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → dom 𝐹 = 𝐽)
93, 8sseqtrid 3151 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → (𝐹𝑆) ⊆ 𝐽)
10 cntop2 12408 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
115ntropn 12323 . . . 4 ((𝐾 ∈ Top ∧ 𝑆𝑌) → ((int‘𝐾)‘𝑆) ∈ 𝐾)
1210, 11sylan 281 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → ((int‘𝐾)‘𝑆) ∈ 𝐾)
13 cnima 12426 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ((int‘𝐾)‘𝑆) ∈ 𝐾) → (𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽)
1412, 13syldan 280 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → (𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽)
155ntrss2 12327 . . . 4 ((𝐾 ∈ Top ∧ 𝑆𝑌) → ((int‘𝐾)‘𝑆) ⊆ 𝑆)
1610, 15sylan 281 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → ((int‘𝐾)‘𝑆) ⊆ 𝑆)
17 imass2 4922 . . 3 (((int‘𝐾)‘𝑆) ⊆ 𝑆 → (𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (𝐹𝑆))
1816, 17syl 14 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → (𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (𝐹𝑆))
194ssntr 12328 . 2 (((𝐽 ∈ Top ∧ (𝐹𝑆) ⊆ 𝐽) ∧ ((𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽 ∧ (𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (𝐹𝑆))) → (𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(𝐹𝑆)))
202, 9, 14, 18, 19syl22anc 1218 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → (𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(𝐹𝑆)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1332   ∈ wcel 1481   ⊆ wss 3075  ∪ cuni 3743  ◡ccnv 4545  dom cdm 4546   “ cima 4549  ‘cfv 5130  (class class class)co 5781  Topctop 12201  intcnt 12299   Cn ccn 12391 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-map 6551  df-top 12202  df-topon 12215  df-ntr 12302  df-cn 12394 This theorem is referenced by:  cnntr  12431  hmeontr  12519
 Copyright terms: Public domain W3C validator