| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocexprlem2b | GIF version | ||
| Description: Lemma for suplocexpr 7851. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| Ref | Expression |
|---|---|
| suplocexprlem2b.b | ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 |
| Ref | Expression |
|---|---|
| suplocexprlem2b | ⊢ (𝐴 ⊆ P → (2nd ‘𝐵) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplocexprlem2b.b | . . 3 ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 | |
| 2 | 1 | fveq2i 5589 | . 2 ⊢ (2nd ‘𝐵) = (2nd ‘〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉) |
| 3 | fo1st 6253 | . . . . . 6 ⊢ 1st :V–onto→V | |
| 4 | fofun 5508 | . . . . . 6 ⊢ (1st :V–onto→V → Fun 1st ) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ Fun 1st |
| 6 | npex 7599 | . . . . . 6 ⊢ P ∈ V | |
| 7 | 6 | ssex 4186 | . . . . 5 ⊢ (𝐴 ⊆ P → 𝐴 ∈ V) |
| 8 | funimaexg 5364 | . . . . 5 ⊢ ((Fun 1st ∧ 𝐴 ∈ V) → (1st “ 𝐴) ∈ V) | |
| 9 | 5, 7, 8 | sylancr 414 | . . . 4 ⊢ (𝐴 ⊆ P → (1st “ 𝐴) ∈ V) |
| 10 | uniexg 4491 | . . . 4 ⊢ ((1st “ 𝐴) ∈ V → ∪ (1st “ 𝐴) ∈ V) | |
| 11 | 9, 10 | syl 14 | . . 3 ⊢ (𝐴 ⊆ P → ∪ (1st “ 𝐴) ∈ V) |
| 12 | nqex 7489 | . . . 4 ⊢ Q ∈ V | |
| 13 | 12 | rabex 4193 | . . 3 ⊢ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢} ∈ V |
| 14 | op2ndg 6247 | . . 3 ⊢ ((∪ (1st “ 𝐴) ∈ V ∧ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢} ∈ V) → (2nd ‘〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) | |
| 15 | 11, 13, 14 | sylancl 413 | . 2 ⊢ (𝐴 ⊆ P → (2nd ‘〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) |
| 16 | 2, 15 | eqtrid 2251 | 1 ⊢ (𝐴 ⊆ P → (2nd ‘𝐵) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 {crab 2489 Vcvv 2773 ⊆ wss 3168 〈cop 3638 ∪ cuni 3853 ∩ cint 3888 class class class wbr 4048 “ cima 4683 Fun wfun 5271 –onto→wfo 5275 ‘cfv 5277 1st c1st 6234 2nd c2nd 6235 Qcnq 7406 <Q cltq 7411 Pcnp 7417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-1st 6236 df-2nd 6237 df-qs 6636 df-ni 7430 df-nqqs 7474 df-inp 7592 |
| This theorem is referenced by: suplocexprlemmu 7844 suplocexprlemru 7845 suplocexprlemdisj 7846 suplocexprlemloc 7847 suplocexprlemex 7848 suplocexprlemub 7849 |
| Copyright terms: Public domain | W3C validator |