![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suplocexprlem2b | GIF version |
Description: Lemma for suplocexpr 7787. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.) |
Ref | Expression |
---|---|
suplocexprlem2b.b | ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 |
Ref | Expression |
---|---|
suplocexprlem2b | ⊢ (𝐴 ⊆ P → (2nd ‘𝐵) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suplocexprlem2b.b | . . 3 ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 | |
2 | 1 | fveq2i 5558 | . 2 ⊢ (2nd ‘𝐵) = (2nd ‘〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉) |
3 | fo1st 6212 | . . . . . 6 ⊢ 1st :V–onto→V | |
4 | fofun 5478 | . . . . . 6 ⊢ (1st :V–onto→V → Fun 1st ) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ Fun 1st |
6 | npex 7535 | . . . . . 6 ⊢ P ∈ V | |
7 | 6 | ssex 4167 | . . . . 5 ⊢ (𝐴 ⊆ P → 𝐴 ∈ V) |
8 | funimaexg 5339 | . . . . 5 ⊢ ((Fun 1st ∧ 𝐴 ∈ V) → (1st “ 𝐴) ∈ V) | |
9 | 5, 7, 8 | sylancr 414 | . . . 4 ⊢ (𝐴 ⊆ P → (1st “ 𝐴) ∈ V) |
10 | uniexg 4471 | . . . 4 ⊢ ((1st “ 𝐴) ∈ V → ∪ (1st “ 𝐴) ∈ V) | |
11 | 9, 10 | syl 14 | . . 3 ⊢ (𝐴 ⊆ P → ∪ (1st “ 𝐴) ∈ V) |
12 | nqex 7425 | . . . 4 ⊢ Q ∈ V | |
13 | 12 | rabex 4174 | . . 3 ⊢ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢} ∈ V |
14 | op2ndg 6206 | . . 3 ⊢ ((∪ (1st “ 𝐴) ∈ V ∧ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢} ∈ V) → (2nd ‘〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) | |
15 | 11, 13, 14 | sylancl 413 | . 2 ⊢ (𝐴 ⊆ P → (2nd ‘〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) |
16 | 2, 15 | eqtrid 2238 | 1 ⊢ (𝐴 ⊆ P → (2nd ‘𝐵) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 {crab 2476 Vcvv 2760 ⊆ wss 3154 〈cop 3622 ∪ cuni 3836 ∩ cint 3871 class class class wbr 4030 “ cima 4663 Fun wfun 5249 –onto→wfo 5253 ‘cfv 5255 1st c1st 6193 2nd c2nd 6194 Qcnq 7342 <Q cltq 7347 Pcnp 7353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-1st 6195 df-2nd 6196 df-qs 6595 df-ni 7366 df-nqqs 7410 df-inp 7528 |
This theorem is referenced by: suplocexprlemmu 7780 suplocexprlemru 7781 suplocexprlemdisj 7782 suplocexprlemloc 7783 suplocexprlemex 7784 suplocexprlemub 7785 |
Copyright terms: Public domain | W3C validator |