Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suplocexprlem2b | GIF version |
Description: Lemma for suplocexpr 7666. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.) |
Ref | Expression |
---|---|
suplocexprlem2b.b | ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 |
Ref | Expression |
---|---|
suplocexprlem2b | ⊢ (𝐴 ⊆ P → (2nd ‘𝐵) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suplocexprlem2b.b | . . 3 ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 | |
2 | 1 | fveq2i 5489 | . 2 ⊢ (2nd ‘𝐵) = (2nd ‘〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉) |
3 | fo1st 6125 | . . . . . 6 ⊢ 1st :V–onto→V | |
4 | fofun 5411 | . . . . . 6 ⊢ (1st :V–onto→V → Fun 1st ) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ Fun 1st |
6 | npex 7414 | . . . . . 6 ⊢ P ∈ V | |
7 | 6 | ssex 4119 | . . . . 5 ⊢ (𝐴 ⊆ P → 𝐴 ∈ V) |
8 | funimaexg 5272 | . . . . 5 ⊢ ((Fun 1st ∧ 𝐴 ∈ V) → (1st “ 𝐴) ∈ V) | |
9 | 5, 7, 8 | sylancr 411 | . . . 4 ⊢ (𝐴 ⊆ P → (1st “ 𝐴) ∈ V) |
10 | uniexg 4417 | . . . 4 ⊢ ((1st “ 𝐴) ∈ V → ∪ (1st “ 𝐴) ∈ V) | |
11 | 9, 10 | syl 14 | . . 3 ⊢ (𝐴 ⊆ P → ∪ (1st “ 𝐴) ∈ V) |
12 | nqex 7304 | . . . 4 ⊢ Q ∈ V | |
13 | 12 | rabex 4126 | . . 3 ⊢ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢} ∈ V |
14 | op2ndg 6119 | . . 3 ⊢ ((∪ (1st “ 𝐴) ∈ V ∧ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢} ∈ V) → (2nd ‘〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) | |
15 | 11, 13, 14 | sylancl 410 | . 2 ⊢ (𝐴 ⊆ P → (2nd ‘〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) |
16 | 2, 15 | syl5eq 2211 | 1 ⊢ (𝐴 ⊆ P → (2nd ‘𝐵) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 {crab 2448 Vcvv 2726 ⊆ wss 3116 〈cop 3579 ∪ cuni 3789 ∩ cint 3824 class class class wbr 3982 “ cima 4607 Fun wfun 5182 –onto→wfo 5186 ‘cfv 5188 1st c1st 6106 2nd c2nd 6107 Qcnq 7221 <Q cltq 7226 Pcnp 7232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-qs 6507 df-ni 7245 df-nqqs 7289 df-inp 7407 |
This theorem is referenced by: suplocexprlemmu 7659 suplocexprlemru 7660 suplocexprlemdisj 7661 suplocexprlemloc 7662 suplocexprlemex 7663 suplocexprlemub 7664 |
Copyright terms: Public domain | W3C validator |