ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlem2b GIF version

Theorem suplocexprlem2b 7716
Description: Lemma for suplocexpr 7727. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypothesis
Ref Expression
suplocexprlem2b.b šµ = ⟨∪ (1st ā€œ š“), {š‘¢ ∈ Q ∣ āˆƒš‘¤ ∈ ∩ (2nd ā€œ š“)š‘¤ <Q š‘¢}⟩
Assertion
Ref Expression
suplocexprlem2b (š“ āŠ† P → (2nd ā€˜šµ) = {š‘¢ ∈ Q ∣ āˆƒš‘¤ ∈ ∩ (2nd ā€œ š“)š‘¤ <Q š‘¢})

Proof of Theorem suplocexprlem2b
StepHypRef Expression
1 suplocexprlem2b.b . . 3 šµ = ⟨∪ (1st ā€œ š“), {š‘¢ ∈ Q ∣ āˆƒš‘¤ ∈ ∩ (2nd ā€œ š“)š‘¤ <Q š‘¢}⟩
21fveq2i 5520 . 2 (2nd ā€˜šµ) = (2nd ā€˜āŸØāˆŖ (1st ā€œ š“), {š‘¢ ∈ Q ∣ āˆƒš‘¤ ∈ ∩ (2nd ā€œ š“)š‘¤ <Q š‘¢}⟩)
3 fo1st 6161 . . . . . 6 1st :V–onto→V
4 fofun 5441 . . . . . 6 (1st :V–onto→V → Fun 1st )
53, 4ax-mp 5 . . . . 5 Fun 1st
6 npex 7475 . . . . . 6 P ∈ V
76ssex 4142 . . . . 5 (š“ āŠ† P → š“ ∈ V)
8 funimaexg 5302 . . . . 5 ((Fun 1st ∧ š“ ∈ V) → (1st ā€œ š“) ∈ V)
95, 7, 8sylancr 414 . . . 4 (š“ āŠ† P → (1st ā€œ š“) ∈ V)
10 uniexg 4441 . . . 4 ((1st ā€œ š“) ∈ V → ∪ (1st ā€œ š“) ∈ V)
119, 10syl 14 . . 3 (š“ āŠ† P → ∪ (1st ā€œ š“) ∈ V)
12 nqex 7365 . . . 4 Q ∈ V
1312rabex 4149 . . 3 {š‘¢ ∈ Q ∣ āˆƒš‘¤ ∈ ∩ (2nd ā€œ š“)š‘¤ <Q š‘¢} ∈ V
14 op2ndg 6155 . . 3 ((∪ (1st ā€œ š“) ∈ V ∧ {š‘¢ ∈ Q ∣ āˆƒš‘¤ ∈ ∩ (2nd ā€œ š“)š‘¤ <Q š‘¢} ∈ V) → (2nd ā€˜āŸØāˆŖ (1st ā€œ š“), {š‘¢ ∈ Q ∣ āˆƒš‘¤ ∈ ∩ (2nd ā€œ š“)š‘¤ <Q š‘¢}⟩) = {š‘¢ ∈ Q ∣ āˆƒš‘¤ ∈ ∩ (2nd ā€œ š“)š‘¤ <Q š‘¢})
1511, 13, 14sylancl 413 . 2 (š“ āŠ† P → (2nd ā€˜āŸØāˆŖ (1st ā€œ š“), {š‘¢ ∈ Q ∣ āˆƒš‘¤ ∈ ∩ (2nd ā€œ š“)š‘¤ <Q š‘¢}⟩) = {š‘¢ ∈ Q ∣ āˆƒš‘¤ ∈ ∩ (2nd ā€œ š“)š‘¤ <Q š‘¢})
162, 15eqtrid 2222 1 (š“ āŠ† P → (2nd ā€˜šµ) = {š‘¢ ∈ Q ∣ āˆƒš‘¤ ∈ ∩ (2nd ā€œ š“)š‘¤ <Q š‘¢})
Colors of variables: wff set class
Syntax hints:   → wi 4   = wceq 1353   ∈ wcel 2148  āˆƒwrex 2456  {crab 2459  Vcvv 2739   āŠ† wss 3131  āŸØcop 3597  āˆŖ cuni 3811  āˆ© cint 3846   class class class wbr 4005   ā€œ cima 4631  Fun wfun 5212  ā€“onto→wfo 5216  ā€˜cfv 5218  1st c1st 6142  2nd c2nd 6143  Qcnq 7282   <Q cltq 7287  Pcnp 7293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6144  df-2nd 6145  df-qs 6544  df-ni 7306  df-nqqs 7350  df-inp 7468
This theorem is referenced by:  suplocexprlemmu  7720  suplocexprlemru  7721  suplocexprlemdisj  7722  suplocexprlemloc  7723  suplocexprlemex  7724  suplocexprlemub  7725
  Copyright terms: Public domain W3C validator