![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suplocexprlem2b | GIF version |
Description: Lemma for suplocexpr 7754. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.) |
Ref | Expression |
---|---|
suplocexprlem2b.b | ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 |
Ref | Expression |
---|---|
suplocexprlem2b | ⊢ (𝐴 ⊆ P → (2nd ‘𝐵) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suplocexprlem2b.b | . . 3 ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 | |
2 | 1 | fveq2i 5537 | . 2 ⊢ (2nd ‘𝐵) = (2nd ‘〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉) |
3 | fo1st 6182 | . . . . . 6 ⊢ 1st :V–onto→V | |
4 | fofun 5458 | . . . . . 6 ⊢ (1st :V–onto→V → Fun 1st ) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ Fun 1st |
6 | npex 7502 | . . . . . 6 ⊢ P ∈ V | |
7 | 6 | ssex 4155 | . . . . 5 ⊢ (𝐴 ⊆ P → 𝐴 ∈ V) |
8 | funimaexg 5319 | . . . . 5 ⊢ ((Fun 1st ∧ 𝐴 ∈ V) → (1st “ 𝐴) ∈ V) | |
9 | 5, 7, 8 | sylancr 414 | . . . 4 ⊢ (𝐴 ⊆ P → (1st “ 𝐴) ∈ V) |
10 | uniexg 4457 | . . . 4 ⊢ ((1st “ 𝐴) ∈ V → ∪ (1st “ 𝐴) ∈ V) | |
11 | 9, 10 | syl 14 | . . 3 ⊢ (𝐴 ⊆ P → ∪ (1st “ 𝐴) ∈ V) |
12 | nqex 7392 | . . . 4 ⊢ Q ∈ V | |
13 | 12 | rabex 4162 | . . 3 ⊢ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢} ∈ V |
14 | op2ndg 6176 | . . 3 ⊢ ((∪ (1st “ 𝐴) ∈ V ∧ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢} ∈ V) → (2nd ‘〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) | |
15 | 11, 13, 14 | sylancl 413 | . 2 ⊢ (𝐴 ⊆ P → (2nd ‘〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) |
16 | 2, 15 | eqtrid 2234 | 1 ⊢ (𝐴 ⊆ P → (2nd ‘𝐵) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ∃wrex 2469 {crab 2472 Vcvv 2752 ⊆ wss 3144 〈cop 3610 ∪ cuni 3824 ∩ cint 3859 class class class wbr 4018 “ cima 4647 Fun wfun 5229 –onto→wfo 5233 ‘cfv 5235 1st c1st 6163 2nd c2nd 6164 Qcnq 7309 <Q cltq 7314 Pcnp 7320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-iinf 4605 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-1st 6165 df-2nd 6166 df-qs 6565 df-ni 7333 df-nqqs 7377 df-inp 7495 |
This theorem is referenced by: suplocexprlemmu 7747 suplocexprlemru 7748 suplocexprlemdisj 7749 suplocexprlemloc 7750 suplocexprlemex 7751 suplocexprlemub 7752 |
Copyright terms: Public domain | W3C validator |