![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suplocexprlem2b | GIF version |
Description: Lemma for suplocexpr 7727. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.) |
Ref | Expression |
---|---|
suplocexprlem2b.b | ⢠šµ = āØāŖ (1st ā š“), {š¢ ā Q ā£ āš¤ ā ā© (2nd ā š“)š¤ <Q š¢}ā© |
Ref | Expression |
---|---|
suplocexprlem2b | ⢠(š“ ā P ā (2nd āšµ) = {š¢ ā Q ā£ āš¤ ā ā© (2nd ā š“)š¤ <Q š¢}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suplocexprlem2b.b | . . 3 ⢠šµ = āØāŖ (1st ā š“), {š¢ ā Q ā£ āš¤ ā ā© (2nd ā š“)š¤ <Q š¢}ā© | |
2 | 1 | fveq2i 5520 | . 2 ⢠(2nd āšµ) = (2nd āāØāŖ (1st ā š“), {š¢ ā Q ā£ āš¤ ā ā© (2nd ā š“)š¤ <Q š¢}ā©) |
3 | fo1st 6161 | . . . . . 6 ⢠1st :VāontoāV | |
4 | fofun 5441 | . . . . . 6 ⢠(1st :VāontoāV ā Fun 1st ) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⢠Fun 1st |
6 | npex 7475 | . . . . . 6 ⢠P ā V | |
7 | 6 | ssex 4142 | . . . . 5 ⢠(š“ ā P ā š“ ā V) |
8 | funimaexg 5302 | . . . . 5 ⢠((Fun 1st ā§ š“ ā V) ā (1st ā š“) ā V) | |
9 | 5, 7, 8 | sylancr 414 | . . . 4 ⢠(š“ ā P ā (1st ā š“) ā V) |
10 | uniexg 4441 | . . . 4 ⢠((1st ā š“) ā V ā āŖ (1st ā š“) ā V) | |
11 | 9, 10 | syl 14 | . . 3 ⢠(š“ ā P ā āŖ (1st ā š“) ā V) |
12 | nqex 7365 | . . . 4 ⢠Q ā V | |
13 | 12 | rabex 4149 | . . 3 ⢠{š¢ ā Q ā£ āš¤ ā ā© (2nd ā š“)š¤ <Q š¢} ā V |
14 | op2ndg 6155 | . . 3 ⢠((āŖ (1st ā š“) ā V ā§ {š¢ ā Q ā£ āš¤ ā ā© (2nd ā š“)š¤ <Q š¢} ā V) ā (2nd āāØāŖ (1st ā š“), {š¢ ā Q ā£ āš¤ ā ā© (2nd ā š“)š¤ <Q š¢}ā©) = {š¢ ā Q ā£ āš¤ ā ā© (2nd ā š“)š¤ <Q š¢}) | |
15 | 11, 13, 14 | sylancl 413 | . 2 ⢠(š“ ā P ā (2nd āāØāŖ (1st ā š“), {š¢ ā Q ā£ āš¤ ā ā© (2nd ā š“)š¤ <Q š¢}ā©) = {š¢ ā Q ā£ āš¤ ā ā© (2nd ā š“)š¤ <Q š¢}) |
16 | 2, 15 | eqtrid 2222 | 1 ⢠(š“ ā P ā (2nd āšµ) = {š¢ ā Q ā£ āš¤ ā ā© (2nd ā š“)š¤ <Q š¢}) |
Colors of variables: wff set class |
Syntax hints: ā wi 4 = wceq 1353 ā wcel 2148 āwrex 2456 {crab 2459 Vcvv 2739 ā wss 3131 āØcop 3597 āŖ cuni 3811 ā© cint 3846 class class class wbr 4005 ā cima 4631 Fun wfun 5212 āontoāwfo 5216 ācfv 5218 1st c1st 6142 2nd c2nd 6143 Qcnq 7282 <Q cltq 7287 Pcnp 7293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-1st 6144 df-2nd 6145 df-qs 6544 df-ni 7306 df-nqqs 7350 df-inp 7468 |
This theorem is referenced by: suplocexprlemmu 7720 suplocexprlemru 7721 suplocexprlemdisj 7722 suplocexprlemloc 7723 suplocexprlemex 7724 suplocexprlemub 7725 |
Copyright terms: Public domain | W3C validator |