ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlem2b GIF version

Theorem suplocexprlem2b 7889
Description: Lemma for suplocexpr 7900. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypothesis
Ref Expression
suplocexprlem2b.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlem2b (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})

Proof of Theorem suplocexprlem2b
StepHypRef Expression
1 suplocexprlem2b.b . . 3 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
21fveq2i 5626 . 2 (2nd𝐵) = (2nd ‘⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩)
3 fo1st 6293 . . . . . 6 1st :V–onto→V
4 fofun 5545 . . . . . 6 (1st :V–onto→V → Fun 1st )
53, 4ax-mp 5 . . . . 5 Fun 1st
6 npex 7648 . . . . . 6 P ∈ V
76ssex 4220 . . . . 5 (𝐴P𝐴 ∈ V)
8 funimaexg 5401 . . . . 5 ((Fun 1st𝐴 ∈ V) → (1st𝐴) ∈ V)
95, 7, 8sylancr 414 . . . 4 (𝐴P → (1st𝐴) ∈ V)
10 uniexg 4527 . . . 4 ((1st𝐴) ∈ V → (1st𝐴) ∈ V)
119, 10syl 14 . . 3 (𝐴P (1st𝐴) ∈ V)
12 nqex 7538 . . . 4 Q ∈ V
1312rabex 4227 . . 3 {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ∈ V
14 op2ndg 6287 . . 3 (( (1st𝐴) ∈ V ∧ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ∈ V) → (2nd ‘⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
1511, 13, 14sylancl 413 . 2 (𝐴P → (2nd ‘⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
162, 15eqtrid 2274 1 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  wrex 2509  {crab 2512  Vcvv 2799  wss 3197  cop 3669   cuni 3887   cint 3922   class class class wbr 4082  cima 4719  Fun wfun 5308  ontowfo 5312  cfv 5314  1st c1st 6274  2nd c2nd 6275  Qcnq 7455   <Q cltq 7460  Pcnp 7466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-1st 6276  df-2nd 6277  df-qs 6676  df-ni 7479  df-nqqs 7523  df-inp 7641
This theorem is referenced by:  suplocexprlemmu  7893  suplocexprlemru  7894  suplocexprlemdisj  7895  suplocexprlemloc  7896  suplocexprlemex  7897  suplocexprlemub  7898
  Copyright terms: Public domain W3C validator