ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlem2b GIF version

Theorem suplocexprlem2b 7781
Description: Lemma for suplocexpr 7792. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypothesis
Ref Expression
suplocexprlem2b.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlem2b (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})

Proof of Theorem suplocexprlem2b
StepHypRef Expression
1 suplocexprlem2b.b . . 3 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
21fveq2i 5561 . 2 (2nd𝐵) = (2nd ‘⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩)
3 fo1st 6215 . . . . . 6 1st :V–onto→V
4 fofun 5481 . . . . . 6 (1st :V–onto→V → Fun 1st )
53, 4ax-mp 5 . . . . 5 Fun 1st
6 npex 7540 . . . . . 6 P ∈ V
76ssex 4170 . . . . 5 (𝐴P𝐴 ∈ V)
8 funimaexg 5342 . . . . 5 ((Fun 1st𝐴 ∈ V) → (1st𝐴) ∈ V)
95, 7, 8sylancr 414 . . . 4 (𝐴P → (1st𝐴) ∈ V)
10 uniexg 4474 . . . 4 ((1st𝐴) ∈ V → (1st𝐴) ∈ V)
119, 10syl 14 . . 3 (𝐴P (1st𝐴) ∈ V)
12 nqex 7430 . . . 4 Q ∈ V
1312rabex 4177 . . 3 {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ∈ V
14 op2ndg 6209 . . 3 (( (1st𝐴) ∈ V ∧ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ∈ V) → (2nd ‘⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
1511, 13, 14sylancl 413 . 2 (𝐴P → (2nd ‘⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
162, 15eqtrid 2241 1 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wrex 2476  {crab 2479  Vcvv 2763  wss 3157  cop 3625   cuni 3839   cint 3874   class class class wbr 4033  cima 4666  Fun wfun 5252  ontowfo 5256  cfv 5258  1st c1st 6196  2nd c2nd 6197  Qcnq 7347   <Q cltq 7352  Pcnp 7358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-qs 6598  df-ni 7371  df-nqqs 7415  df-inp 7533
This theorem is referenced by:  suplocexprlemmu  7785  suplocexprlemru  7786  suplocexprlemdisj  7787  suplocexprlemloc  7788  suplocexprlemex  7789  suplocexprlemub  7790
  Copyright terms: Public domain W3C validator