Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvssunirng | GIF version |
Description: The result of a function value is always a subset of the union of the range, if the input is a set. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
fvssunirng | ⊢ (𝐴 ∈ V → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | brelrng 4835 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝑥 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥 ∈ ran 𝐹) | |
3 | 2 | 3exp 1192 | . . . . 5 ⊢ (𝐴 ∈ V → (𝑥 ∈ V → (𝐴𝐹𝑥 → 𝑥 ∈ ran 𝐹))) |
4 | 1, 3 | mpi 15 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴𝐹𝑥 → 𝑥 ∈ ran 𝐹)) |
5 | elssuni 3817 | . . . 4 ⊢ (𝑥 ∈ ran 𝐹 → 𝑥 ⊆ ∪ ran 𝐹) | |
6 | 4, 5 | syl6 33 | . . 3 ⊢ (𝐴 ∈ V → (𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹)) |
7 | 6 | alrimiv 1862 | . 2 ⊢ (𝐴 ∈ V → ∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹)) |
8 | fvss 5500 | . 2 ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹) → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
9 | 7, 8 | syl 14 | 1 ⊢ (𝐴 ∈ V → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 ∪ cuni 3789 class class class wbr 3982 ran crn 4605 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-cnv 4612 df-dm 4614 df-rn 4615 df-iota 5153 df-fv 5196 |
This theorem is referenced by: fvexg 5505 strfvssn 12416 xmetunirn 12998 mopnval 13082 |
Copyright terms: Public domain | W3C validator |