ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvssunirng GIF version

Theorem fvssunirng 5573
Description: The result of a function value is always a subset of the union of the range, if the input is a set. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
fvssunirng (𝐴 ∈ V → (𝐹𝐴) ⊆ ran 𝐹)

Proof of Theorem fvssunirng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . . 5 𝑥 ∈ V
2 brelrng 4897 . . . . . 6 ((𝐴 ∈ V ∧ 𝑥 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥 ∈ ran 𝐹)
323exp 1204 . . . . 5 (𝐴 ∈ V → (𝑥 ∈ V → (𝐴𝐹𝑥𝑥 ∈ ran 𝐹)))
41, 3mpi 15 . . . 4 (𝐴 ∈ V → (𝐴𝐹𝑥𝑥 ∈ ran 𝐹))
5 elssuni 3867 . . . 4 (𝑥 ∈ ran 𝐹𝑥 ran 𝐹)
64, 5syl6 33 . . 3 (𝐴 ∈ V → (𝐴𝐹𝑥𝑥 ran 𝐹))
76alrimiv 1888 . 2 (𝐴 ∈ V → ∀𝑥(𝐴𝐹𝑥𝑥 ran 𝐹))
8 fvss 5572 . 2 (∀𝑥(𝐴𝐹𝑥𝑥 ran 𝐹) → (𝐹𝐴) ⊆ ran 𝐹)
97, 8syl 14 1 (𝐴 ∈ V → (𝐹𝐴) ⊆ ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  wcel 2167  Vcvv 2763  wss 3157   cuni 3839   class class class wbr 4033  ran crn 4664  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-cnv 4671  df-dm 4673  df-rn 4674  df-iota 5219  df-fv 5266
This theorem is referenced by:  fvexg  5577  strfvssn  12700  ptex  12935  xmetunirn  14594  mopnval  14678
  Copyright terms: Public domain W3C validator