![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvssunirng | GIF version |
Description: The result of a function value is always a subset of the union of the range, if the input is a set. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
fvssunirng | ⊢ (𝐴 ∈ V → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | brelrng 4894 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝑥 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥 ∈ ran 𝐹) | |
3 | 2 | 3exp 1204 | . . . . 5 ⊢ (𝐴 ∈ V → (𝑥 ∈ V → (𝐴𝐹𝑥 → 𝑥 ∈ ran 𝐹))) |
4 | 1, 3 | mpi 15 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴𝐹𝑥 → 𝑥 ∈ ran 𝐹)) |
5 | elssuni 3864 | . . . 4 ⊢ (𝑥 ∈ ran 𝐹 → 𝑥 ⊆ ∪ ran 𝐹) | |
6 | 4, 5 | syl6 33 | . . 3 ⊢ (𝐴 ∈ V → (𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹)) |
7 | 6 | alrimiv 1885 | . 2 ⊢ (𝐴 ∈ V → ∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹)) |
8 | fvss 5569 | . 2 ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹) → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
9 | 7, 8 | syl 14 | 1 ⊢ (𝐴 ∈ V → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3154 ∪ cuni 3836 class class class wbr 4030 ran crn 4661 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-cnv 4668 df-dm 4670 df-rn 4671 df-iota 5216 df-fv 5263 |
This theorem is referenced by: fvexg 5574 strfvssn 12643 ptex 12878 xmetunirn 14537 mopnval 14621 |
Copyright terms: Public domain | W3C validator |