Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvssunirng | GIF version |
Description: The result of a function value is always a subset of the union of the range, if the input is a set. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
fvssunirng | ⊢ (𝐴 ∈ V → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | brelrng 4851 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝑥 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥 ∈ ran 𝐹) | |
3 | 2 | 3exp 1202 | . . . . 5 ⊢ (𝐴 ∈ V → (𝑥 ∈ V → (𝐴𝐹𝑥 → 𝑥 ∈ ran 𝐹))) |
4 | 1, 3 | mpi 15 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴𝐹𝑥 → 𝑥 ∈ ran 𝐹)) |
5 | elssuni 3833 | . . . 4 ⊢ (𝑥 ∈ ran 𝐹 → 𝑥 ⊆ ∪ ran 𝐹) | |
6 | 4, 5 | syl6 33 | . . 3 ⊢ (𝐴 ∈ V → (𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹)) |
7 | 6 | alrimiv 1872 | . 2 ⊢ (𝐴 ∈ V → ∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹)) |
8 | fvss 5521 | . 2 ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹) → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
9 | 7, 8 | syl 14 | 1 ⊢ (𝐴 ∈ V → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 ∈ wcel 2146 Vcvv 2735 ⊆ wss 3127 ∪ cuni 3805 class class class wbr 3998 ran crn 4621 ‘cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-cnv 4628 df-dm 4630 df-rn 4631 df-iota 5170 df-fv 5216 |
This theorem is referenced by: fvexg 5526 strfvssn 12449 xmetunirn 13409 mopnval 13493 |
Copyright terms: Public domain | W3C validator |