Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvssunirng | GIF version |
Description: The result of a function value is always a subset of the union of the range, if the input is a set. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
fvssunirng | ⊢ (𝐴 ∈ V → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | brelrng 4842 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝑥 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥 ∈ ran 𝐹) | |
3 | 2 | 3exp 1197 | . . . . 5 ⊢ (𝐴 ∈ V → (𝑥 ∈ V → (𝐴𝐹𝑥 → 𝑥 ∈ ran 𝐹))) |
4 | 1, 3 | mpi 15 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴𝐹𝑥 → 𝑥 ∈ ran 𝐹)) |
5 | elssuni 3824 | . . . 4 ⊢ (𝑥 ∈ ran 𝐹 → 𝑥 ⊆ ∪ ran 𝐹) | |
6 | 4, 5 | syl6 33 | . . 3 ⊢ (𝐴 ∈ V → (𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹)) |
7 | 6 | alrimiv 1867 | . 2 ⊢ (𝐴 ∈ V → ∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹)) |
8 | fvss 5510 | . 2 ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹) → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
9 | 7, 8 | syl 14 | 1 ⊢ (𝐴 ∈ V → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 ∪ cuni 3796 class class class wbr 3989 ran crn 4612 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-cnv 4619 df-dm 4621 df-rn 4622 df-iota 5160 df-fv 5206 |
This theorem is referenced by: fvexg 5515 strfvssn 12438 xmetunirn 13152 mopnval 13236 |
Copyright terms: Public domain | W3C validator |