ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvssunirng GIF version

Theorem fvssunirng 5511
Description: The result of a function value is always a subset of the union of the range, if the input is a set. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
fvssunirng (𝐴 ∈ V → (𝐹𝐴) ⊆ ran 𝐹)

Proof of Theorem fvssunirng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . 5 𝑥 ∈ V
2 brelrng 4842 . . . . . 6 ((𝐴 ∈ V ∧ 𝑥 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥 ∈ ran 𝐹)
323exp 1197 . . . . 5 (𝐴 ∈ V → (𝑥 ∈ V → (𝐴𝐹𝑥𝑥 ∈ ran 𝐹)))
41, 3mpi 15 . . . 4 (𝐴 ∈ V → (𝐴𝐹𝑥𝑥 ∈ ran 𝐹))
5 elssuni 3824 . . . 4 (𝑥 ∈ ran 𝐹𝑥 ran 𝐹)
64, 5syl6 33 . . 3 (𝐴 ∈ V → (𝐴𝐹𝑥𝑥 ran 𝐹))
76alrimiv 1867 . 2 (𝐴 ∈ V → ∀𝑥(𝐴𝐹𝑥𝑥 ran 𝐹))
8 fvss 5510 . 2 (∀𝑥(𝐴𝐹𝑥𝑥 ran 𝐹) → (𝐹𝐴) ⊆ ran 𝐹)
97, 8syl 14 1 (𝐴 ∈ V → (𝐹𝐴) ⊆ ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346  wcel 2141  Vcvv 2730  wss 3121   cuni 3796   class class class wbr 3989  ran crn 4612  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-cnv 4619  df-dm 4621  df-rn 4622  df-iota 5160  df-fv 5206
This theorem is referenced by:  fvexg  5515  strfvssn  12438  xmetunirn  13152  mopnval  13236
  Copyright terms: Public domain W3C validator