ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvssunirng GIF version

Theorem fvssunirng 5546
Description: The result of a function value is always a subset of the union of the range, if the input is a set. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
fvssunirng (𝐴 ∈ V → (𝐹𝐴) ⊆ ran 𝐹)

Proof of Theorem fvssunirng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2755 . . . . 5 𝑥 ∈ V
2 brelrng 4873 . . . . . 6 ((𝐴 ∈ V ∧ 𝑥 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥 ∈ ran 𝐹)
323exp 1204 . . . . 5 (𝐴 ∈ V → (𝑥 ∈ V → (𝐴𝐹𝑥𝑥 ∈ ran 𝐹)))
41, 3mpi 15 . . . 4 (𝐴 ∈ V → (𝐴𝐹𝑥𝑥 ∈ ran 𝐹))
5 elssuni 3852 . . . 4 (𝑥 ∈ ran 𝐹𝑥 ran 𝐹)
64, 5syl6 33 . . 3 (𝐴 ∈ V → (𝐴𝐹𝑥𝑥 ran 𝐹))
76alrimiv 1885 . 2 (𝐴 ∈ V → ∀𝑥(𝐴𝐹𝑥𝑥 ran 𝐹))
8 fvss 5545 . 2 (∀𝑥(𝐴𝐹𝑥𝑥 ran 𝐹) → (𝐹𝐴) ⊆ ran 𝐹)
97, 8syl 14 1 (𝐴 ∈ V → (𝐹𝐴) ⊆ ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  wcel 2160  Vcvv 2752  wss 3144   cuni 3824   class class class wbr 4018  ran crn 4642  cfv 5232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-cnv 4649  df-dm 4651  df-rn 4652  df-iota 5193  df-fv 5240
This theorem is referenced by:  fvexg  5550  strfvssn  12529  ptex  12762  xmetunirn  14295  mopnval  14379
  Copyright terms: Public domain W3C validator