ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpass GIF version

Theorem grpass 13151
Description: A group operation is associative. (Contributed by NM, 14-Aug-2011.)
Hypotheses
Ref Expression
grpcl.b 𝐵 = (Base‘𝐺)
grpcl.p + = (+g𝐺)
Assertion
Ref Expression
grpass ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))

Proof of Theorem grpass
StepHypRef Expression
1 grpmnd 13149 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2 grpcl.b . . 3 𝐵 = (Base‘𝐺)
3 grpcl.p . . 3 + = (+g𝐺)
42, 3mndass 13075 . 2 ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
51, 4sylan 283 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5923  Basecbs 12688  +gcplusg 12765  Mndcmnd 13067  Grpcgrp 13142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7972  ax-resscn 7973  ax-1re 7975  ax-addrcl 7978
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5926  df-inn 8993  df-2 9051  df-ndx 12691  df-slot 12692  df-base 12694  df-plusg 12778  df-sgrp 13055  df-mnd 13068  df-grp 13145
This theorem is referenced by:  grpassd  13154  grprcan  13179  grprinv  13193  grpinvid1  13194  grpinvid2  13195  grpressid  13203  grplcan  13204  grpasscan1  13205  grpasscan2  13206  grplmulf1o  13216  grpinvadd  13220  grpsubadd  13230  grpaddsubass  13232  grpsubsub4  13235  dfgrp3m  13241  grplactcnv  13244  imasgrp  13251  mulgaddcomlem  13285  mulgaddcom  13286  mulgdirlem  13293  issubg2m  13329  isnsg3  13347  nmzsubg  13350  ssnmz  13351  eqger  13364  eqgcpbl  13368  qusgrp  13372  conjghm  13416  conjnmz  13419  ringcom  13597  lmodass  13869
  Copyright terms: Public domain W3C validator