| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grprinv | GIF version | ||
| Description: The right inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinv.p | ⊢ + = (+g‘𝐺) |
| grpinv.u | ⊢ 0 = (0g‘𝐺) |
| grpinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grprinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinv.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | 1, 2 | grpcl 13384 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| 4 | grpinv.u | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 5 | 1, 4 | grpidcl 13405 | . 2 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 6 | 1, 2, 4 | grplid 13407 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
| 7 | 1, 2 | grpass 13385 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 8 | 1, 2, 4 | grpinvex 13386 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
| 9 | simpr 110 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 10 | grpinv.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 11 | 1, 10 | grpinvcl 13424 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 12 | 1, 2, 4, 10 | grplinv 13426 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| 13 | 3, 5, 6, 7, 8, 9, 11, 12 | grpinva 13262 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 +gcplusg 12953 0gc0g 13132 Grpcgrp 13376 invgcminusg 13377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-inn 9044 df-2 9102 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 |
| This theorem is referenced by: grpinvid1 13428 grpinvid2 13429 grprinvd 13432 grplrinv 13433 grpasscan1 13439 grpinvinv 13443 grplmulf1o 13450 grpinvadd 13454 grpsubid 13460 dfgrp3m 13475 mulgdirlem 13533 subginv 13561 nmzsubg 13590 eqger 13604 qusinv 13616 ghminv 13630 ringnegl 13857 unitrinv 13933 lmodvnegid 14135 |
| Copyright terms: Public domain | W3C validator |