ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grprinv GIF version

Theorem grprinv 13570
Description: The right inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpinv.b 𝐵 = (Base‘𝐺)
grpinv.p + = (+g𝐺)
grpinv.u 0 = (0g𝐺)
grpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grprinv ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = 0 )

Proof of Theorem grprinv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . 3 𝐵 = (Base‘𝐺)
2 grpinv.p . . 3 + = (+g𝐺)
31, 2grpcl 13527 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
4 grpinv.u . . 3 0 = (0g𝐺)
51, 4grpidcl 13548 . 2 (𝐺 ∈ Grp → 0𝐵)
61, 2, 4grplid 13550 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
71, 2grpass 13528 . 2 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
81, 2, 4grpinvex 13529 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
9 simpr 110 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝑋𝐵)
10 grpinv.n . . 3 𝑁 = (invg𝐺)
111, 10grpinvcl 13567 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
121, 2, 4, 10grplinv 13569 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )
133, 5, 6, 7, 8, 9, 11, 12grpinva 13405 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  cfv 5314  (class class class)co 5994  Basecbs 13018  +gcplusg 13096  0gc0g 13275  Grpcgrp 13519  invgcminusg 13520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-minusg 13523
This theorem is referenced by:  grpinvid1  13571  grpinvid2  13572  grprinvd  13575  grplrinv  13576  grpasscan1  13582  grpinvinv  13586  grplmulf1o  13593  grpinvadd  13597  grpsubid  13603  dfgrp3m  13618  mulgdirlem  13676  subginv  13704  nmzsubg  13733  eqger  13747  qusinv  13759  ghminv  13773  ringnegl  14000  unitrinv  14076  lmodvnegid  14278
  Copyright terms: Public domain W3C validator