ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpideu GIF version

Theorem grpideu 13387
Description: The two-sided identity element of a group is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 8-Dec-2014.)
Hypotheses
Ref Expression
grpcl.b 𝐵 = (Base‘𝐺)
grpcl.p + = (+g𝐺)
grpinvex.p 0 = (0g𝐺)
Assertion
Ref Expression
grpideu (𝐺 ∈ Grp → ∃!𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
Distinct variable groups:   𝑥,𝑢,𝐵   𝑢,𝐺,𝑥   𝑢, + ,𝑥   𝑥, 0
Allowed substitution hint:   0 (𝑢)

Proof of Theorem grpideu
StepHypRef Expression
1 grpmnd 13383 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2 grpcl.b . . 3 𝐵 = (Base‘𝐺)
3 grpcl.p . . 3 + = (+g𝐺)
42, 3mndideu 13302 . 2 (𝐺 ∈ Mnd → ∃!𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
51, 4syl 14 1 (𝐺 ∈ Grp → ∃!𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  ∃!wreu 2487  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  0gc0g 13132  Mndcmnd 13292  Grpcgrp 13376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-ov 5954  df-inn 9044  df-2 9102  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator