ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpideu GIF version

Theorem grpideu 13083
Description: The two-sided identity element of a group is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 8-Dec-2014.)
Hypotheses
Ref Expression
grpcl.b 𝐵 = (Base‘𝐺)
grpcl.p + = (+g𝐺)
grpinvex.p 0 = (0g𝐺)
Assertion
Ref Expression
grpideu (𝐺 ∈ Grp → ∃!𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
Distinct variable groups:   𝑥,𝑢,𝐵   𝑢,𝐺,𝑥   𝑢, + ,𝑥   𝑥, 0
Allowed substitution hint:   0 (𝑢)

Proof of Theorem grpideu
StepHypRef Expression
1 grpmnd 13079 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2 grpcl.b . . 3 𝐵 = (Base‘𝐺)
3 grpcl.p . . 3 + = (+g𝐺)
42, 3mndideu 13007 . 2 (𝐺 ∈ Mnd → ∃!𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
51, 4syl 14 1 (𝐺 ∈ Grp → ∃!𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  ∃!wreu 2474  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  0gc0g 12867  Mndcmnd 12997  Grpcgrp 13072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator