ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodvsmmulgdi GIF version

Theorem lmodvsmmulgdi 14129
Description: Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019.)
Hypotheses
Ref Expression
lmodvsmmulgdi.v 𝑉 = (Base‘𝑊)
lmodvsmmulgdi.f 𝐹 = (Scalar‘𝑊)
lmodvsmmulgdi.s · = ( ·𝑠𝑊)
lmodvsmmulgdi.k 𝐾 = (Base‘𝐹)
lmodvsmmulgdi.p = (.g𝑊)
lmodvsmmulgdi.e 𝐸 = (.g𝐹)
Assertion
Ref Expression
lmodvsmmulgdi ((𝑊 ∈ LMod ∧ (𝐶𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))

Proof of Theorem lmodvsmmulgdi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5958 . . . . . . 7 (𝑥 = 0 → (𝑥 (𝐶 · 𝑋)) = (0 (𝐶 · 𝑋)))
2 oveq1 5958 . . . . . . . 8 (𝑥 = 0 → (𝑥𝐸𝐶) = (0𝐸𝐶))
32oveq1d 5966 . . . . . . 7 (𝑥 = 0 → ((𝑥𝐸𝐶) · 𝑋) = ((0𝐸𝐶) · 𝑋))
41, 3eqeq12d 2221 . . . . . 6 (𝑥 = 0 → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ (0 (𝐶 · 𝑋)) = ((0𝐸𝐶) · 𝑋)))
54imbi2d 230 . . . . 5 (𝑥 = 0 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 (𝐶 · 𝑋)) = ((0𝐸𝐶) · 𝑋))))
6 oveq1 5958 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 (𝐶 · 𝑋)) = (𝑦 (𝐶 · 𝑋)))
7 oveq1 5958 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐸𝐶) = (𝑦𝐸𝐶))
87oveq1d 5966 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝐸𝐶) · 𝑋) = ((𝑦𝐸𝐶) · 𝑋))
96, 8eqeq12d 2221 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)))
109imbi2d 230 . . . . 5 (𝑥 = 𝑦 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋))))
11 oveq1 5958 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥 (𝐶 · 𝑋)) = ((𝑦 + 1) (𝐶 · 𝑋)))
12 oveq1 5958 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥𝐸𝐶) = ((𝑦 + 1)𝐸𝐶))
1312oveq1d 5966 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑥𝐸𝐶) · 𝑋) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
1411, 13eqeq12d 2221 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋)))
1514imbi2d 230 . . . . 5 (𝑥 = (𝑦 + 1) → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))))
16 oveq1 5958 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 (𝐶 · 𝑋)) = (𝑁 (𝐶 · 𝑋)))
17 oveq1 5958 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥𝐸𝐶) = (𝑁𝐸𝐶))
1817oveq1d 5966 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥𝐸𝐶) · 𝑋) = ((𝑁𝐸𝐶) · 𝑋))
1916, 18eqeq12d 2221 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))
2019imbi2d 230 . . . . 5 (𝑥 = 𝑁 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))))
21 simpr 110 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑊 ∈ LMod)
22 simpr 110 . . . . . . . 8 ((𝐶𝐾𝑋𝑉) → 𝑋𝑉)
2322adantr 276 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑋𝑉)
24 lmodvsmmulgdi.v . . . . . . . 8 𝑉 = (Base‘𝑊)
25 lmodvsmmulgdi.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
26 lmodvsmmulgdi.s . . . . . . . 8 · = ( ·𝑠𝑊)
27 eqid 2206 . . . . . . . 8 (0g𝐹) = (0g𝐹)
28 eqid 2206 . . . . . . . 8 (0g𝑊) = (0g𝑊)
2924, 25, 26, 27, 28lmod0vs 14127 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g𝐹) · 𝑋) = (0g𝑊))
3021, 23, 29syl2anc 411 . . . . . 6 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((0g𝐹) · 𝑋) = (0g𝑊))
31 simpl 109 . . . . . . . . 9 ((𝐶𝐾𝑋𝑉) → 𝐶𝐾)
3231adantr 276 . . . . . . . 8 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝐶𝐾)
33 lmodvsmmulgdi.k . . . . . . . . 9 𝐾 = (Base‘𝐹)
34 lmodvsmmulgdi.e . . . . . . . . 9 𝐸 = (.g𝐹)
3533, 27, 34mulg0 13505 . . . . . . . 8 (𝐶𝐾 → (0𝐸𝐶) = (0g𝐹))
3632, 35syl 14 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0𝐸𝐶) = (0g𝐹))
3736oveq1d 5966 . . . . . 6 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((0𝐸𝐶) · 𝑋) = ((0g𝐹) · 𝑋))
3824, 25, 26, 33lmodvscl 14111 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐶𝐾𝑋𝑉) → (𝐶 · 𝑋) ∈ 𝑉)
3921, 32, 23, 38syl3anc 1250 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝐶 · 𝑋) ∈ 𝑉)
40 lmodvsmmulgdi.p . . . . . . . 8 = (.g𝑊)
4124, 28, 40mulg0 13505 . . . . . . 7 ((𝐶 · 𝑋) ∈ 𝑉 → (0 (𝐶 · 𝑋)) = (0g𝑊))
4239, 41syl 14 . . . . . 6 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 (𝐶 · 𝑋)) = (0g𝑊))
4330, 37, 423eqtr4rd 2250 . . . . 5 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 (𝐶 · 𝑋)) = ((0𝐸𝐶) · 𝑋))
44 lmodgrp 14100 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
4544grpmndd 13389 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑊 ∈ Mnd)
4645ad2antll 491 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ Mnd)
47 simpl 109 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑦 ∈ ℕ0)
4839adantl 277 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝐶 · 𝑋) ∈ 𝑉)
49 eqid 2206 . . . . . . . . . . 11 (+g𝑊) = (+g𝑊)
5024, 40, 49mulgnn0p1 13513 . . . . . . . . . 10 ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ (𝐶 · 𝑋) ∈ 𝑉) → ((𝑦 + 1) (𝐶 · 𝑋)) = ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)))
5146, 47, 48, 50syl3anc 1250 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1) (𝐶 · 𝑋)) = ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)))
5251adantr 276 . . . . . . . 8 (((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → ((𝑦 + 1) (𝐶 · 𝑋)) = ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)))
53 oveq1 5958 . . . . . . . . 9 ((𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋) → ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)) = (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)))
5421adantl 277 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ LMod)
5525lmodring 14101 . . . . . . . . . . . . . 14 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
56 ringmnd 13812 . . . . . . . . . . . . . 14 (𝐹 ∈ Ring → 𝐹 ∈ Mnd)
5755, 56syl 14 . . . . . . . . . . . . 13 (𝑊 ∈ LMod → 𝐹 ∈ Mnd)
5857ad2antll 491 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝐹 ∈ Mnd)
59 simprll 537 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝐶𝐾)
6033, 34, 58, 47, 59mulgnn0cld 13523 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑦𝐸𝐶) ∈ 𝐾)
6123adantl 277 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑋𝑉)
62 eqid 2206 . . . . . . . . . . . 12 (+g𝐹) = (+g𝐹)
6324, 49, 25, 26, 33, 62lmodvsdir 14118 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ((𝑦𝐸𝐶) ∈ 𝐾𝐶𝐾𝑋𝑉)) → (((𝑦𝐸𝐶)(+g𝐹)𝐶) · 𝑋) = (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)))
6454, 60, 59, 61, 63syl13anc 1252 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝐶)(+g𝐹)𝐶) · 𝑋) = (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)))
6533, 34, 62mulgnn0p1 13513 . . . . . . . . . . . . 13 ((𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐶𝐾) → ((𝑦 + 1)𝐸𝐶) = ((𝑦𝐸𝐶)(+g𝐹)𝐶))
6658, 47, 59, 65syl3anc 1250 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1)𝐸𝐶) = ((𝑦𝐸𝐶)(+g𝐹)𝐶))
6766eqcomd 2212 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦𝐸𝐶)(+g𝐹)𝐶) = ((𝑦 + 1)𝐸𝐶))
6867oveq1d 5966 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝐶)(+g𝐹)𝐶) · 𝑋) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
6964, 68eqtr3d 2241 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
7053, 69sylan9eqr 2261 . . . . . . . 8 (((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
7152, 70eqtrd 2239 . . . . . . 7 (((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
7271exp31 364 . . . . . 6 (𝑦 ∈ ℕ0 → (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))))
7372a2d 26 . . . . 5 (𝑦 ∈ ℕ0 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))))
745, 10, 15, 20, 43, 73nn0ind 9494 . . . 4 (𝑁 ∈ ℕ0 → (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))
7574exp4c 368 . . 3 (𝑁 ∈ ℕ0 → (𝐶𝐾 → (𝑋𝑉 → (𝑊 ∈ LMod → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))))
76753imp21 1201 . 2 ((𝐶𝐾𝑁 ∈ ℕ0𝑋𝑉) → (𝑊 ∈ LMod → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))
7776impcom 125 1 ((𝑊 ∈ LMod ∧ (𝐶𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  cfv 5276  (class class class)co 5951  0cc0 7932  1c1 7933   + caddc 7935  0cn0 9302  Basecbs 12876  +gcplusg 12953  Scalarcsca 12956   ·𝑠 cvsca 12957  0gc0g 13132  Mndcmnd 13292  .gcmg 13499  Ringcrg 13802  LModclmod 14093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-n0 9303  df-z 9380  df-uz 9656  df-seqfrec 10600  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380  df-mulg 13500  df-ring 13804  df-lmod 14095
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator