ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodvsmmulgdi GIF version

Theorem lmodvsmmulgdi 14252
Description: Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019.)
Hypotheses
Ref Expression
lmodvsmmulgdi.v 𝑉 = (Base‘𝑊)
lmodvsmmulgdi.f 𝐹 = (Scalar‘𝑊)
lmodvsmmulgdi.s · = ( ·𝑠𝑊)
lmodvsmmulgdi.k 𝐾 = (Base‘𝐹)
lmodvsmmulgdi.p = (.g𝑊)
lmodvsmmulgdi.e 𝐸 = (.g𝐹)
Assertion
Ref Expression
lmodvsmmulgdi ((𝑊 ∈ LMod ∧ (𝐶𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))

Proof of Theorem lmodvsmmulgdi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5981 . . . . . . 7 (𝑥 = 0 → (𝑥 (𝐶 · 𝑋)) = (0 (𝐶 · 𝑋)))
2 oveq1 5981 . . . . . . . 8 (𝑥 = 0 → (𝑥𝐸𝐶) = (0𝐸𝐶))
32oveq1d 5989 . . . . . . 7 (𝑥 = 0 → ((𝑥𝐸𝐶) · 𝑋) = ((0𝐸𝐶) · 𝑋))
41, 3eqeq12d 2224 . . . . . 6 (𝑥 = 0 → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ (0 (𝐶 · 𝑋)) = ((0𝐸𝐶) · 𝑋)))
54imbi2d 230 . . . . 5 (𝑥 = 0 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 (𝐶 · 𝑋)) = ((0𝐸𝐶) · 𝑋))))
6 oveq1 5981 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 (𝐶 · 𝑋)) = (𝑦 (𝐶 · 𝑋)))
7 oveq1 5981 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐸𝐶) = (𝑦𝐸𝐶))
87oveq1d 5989 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝐸𝐶) · 𝑋) = ((𝑦𝐸𝐶) · 𝑋))
96, 8eqeq12d 2224 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)))
109imbi2d 230 . . . . 5 (𝑥 = 𝑦 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋))))
11 oveq1 5981 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥 (𝐶 · 𝑋)) = ((𝑦 + 1) (𝐶 · 𝑋)))
12 oveq1 5981 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥𝐸𝐶) = ((𝑦 + 1)𝐸𝐶))
1312oveq1d 5989 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑥𝐸𝐶) · 𝑋) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
1411, 13eqeq12d 2224 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋)))
1514imbi2d 230 . . . . 5 (𝑥 = (𝑦 + 1) → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))))
16 oveq1 5981 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 (𝐶 · 𝑋)) = (𝑁 (𝐶 · 𝑋)))
17 oveq1 5981 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥𝐸𝐶) = (𝑁𝐸𝐶))
1817oveq1d 5989 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥𝐸𝐶) · 𝑋) = ((𝑁𝐸𝐶) · 𝑋))
1916, 18eqeq12d 2224 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))
2019imbi2d 230 . . . . 5 (𝑥 = 𝑁 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))))
21 simpr 110 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑊 ∈ LMod)
22 simpr 110 . . . . . . . 8 ((𝐶𝐾𝑋𝑉) → 𝑋𝑉)
2322adantr 276 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑋𝑉)
24 lmodvsmmulgdi.v . . . . . . . 8 𝑉 = (Base‘𝑊)
25 lmodvsmmulgdi.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
26 lmodvsmmulgdi.s . . . . . . . 8 · = ( ·𝑠𝑊)
27 eqid 2209 . . . . . . . 8 (0g𝐹) = (0g𝐹)
28 eqid 2209 . . . . . . . 8 (0g𝑊) = (0g𝑊)
2924, 25, 26, 27, 28lmod0vs 14250 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g𝐹) · 𝑋) = (0g𝑊))
3021, 23, 29syl2anc 411 . . . . . 6 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((0g𝐹) · 𝑋) = (0g𝑊))
31 simpl 109 . . . . . . . . 9 ((𝐶𝐾𝑋𝑉) → 𝐶𝐾)
3231adantr 276 . . . . . . . 8 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝐶𝐾)
33 lmodvsmmulgdi.k . . . . . . . . 9 𝐾 = (Base‘𝐹)
34 lmodvsmmulgdi.e . . . . . . . . 9 𝐸 = (.g𝐹)
3533, 27, 34mulg0 13628 . . . . . . . 8 (𝐶𝐾 → (0𝐸𝐶) = (0g𝐹))
3632, 35syl 14 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0𝐸𝐶) = (0g𝐹))
3736oveq1d 5989 . . . . . 6 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((0𝐸𝐶) · 𝑋) = ((0g𝐹) · 𝑋))
3824, 25, 26, 33lmodvscl 14234 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐶𝐾𝑋𝑉) → (𝐶 · 𝑋) ∈ 𝑉)
3921, 32, 23, 38syl3anc 1252 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝐶 · 𝑋) ∈ 𝑉)
40 lmodvsmmulgdi.p . . . . . . . 8 = (.g𝑊)
4124, 28, 40mulg0 13628 . . . . . . 7 ((𝐶 · 𝑋) ∈ 𝑉 → (0 (𝐶 · 𝑋)) = (0g𝑊))
4239, 41syl 14 . . . . . 6 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 (𝐶 · 𝑋)) = (0g𝑊))
4330, 37, 423eqtr4rd 2253 . . . . 5 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 (𝐶 · 𝑋)) = ((0𝐸𝐶) · 𝑋))
44 lmodgrp 14223 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
4544grpmndd 13512 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑊 ∈ Mnd)
4645ad2antll 491 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ Mnd)
47 simpl 109 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑦 ∈ ℕ0)
4839adantl 277 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝐶 · 𝑋) ∈ 𝑉)
49 eqid 2209 . . . . . . . . . . 11 (+g𝑊) = (+g𝑊)
5024, 40, 49mulgnn0p1 13636 . . . . . . . . . 10 ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ (𝐶 · 𝑋) ∈ 𝑉) → ((𝑦 + 1) (𝐶 · 𝑋)) = ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)))
5146, 47, 48, 50syl3anc 1252 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1) (𝐶 · 𝑋)) = ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)))
5251adantr 276 . . . . . . . 8 (((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → ((𝑦 + 1) (𝐶 · 𝑋)) = ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)))
53 oveq1 5981 . . . . . . . . 9 ((𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋) → ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)) = (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)))
5421adantl 277 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ LMod)
5525lmodring 14224 . . . . . . . . . . . . . 14 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
56 ringmnd 13935 . . . . . . . . . . . . . 14 (𝐹 ∈ Ring → 𝐹 ∈ Mnd)
5755, 56syl 14 . . . . . . . . . . . . 13 (𝑊 ∈ LMod → 𝐹 ∈ Mnd)
5857ad2antll 491 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝐹 ∈ Mnd)
59 simprll 537 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝐶𝐾)
6033, 34, 58, 47, 59mulgnn0cld 13646 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑦𝐸𝐶) ∈ 𝐾)
6123adantl 277 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑋𝑉)
62 eqid 2209 . . . . . . . . . . . 12 (+g𝐹) = (+g𝐹)
6324, 49, 25, 26, 33, 62lmodvsdir 14241 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ((𝑦𝐸𝐶) ∈ 𝐾𝐶𝐾𝑋𝑉)) → (((𝑦𝐸𝐶)(+g𝐹)𝐶) · 𝑋) = (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)))
6454, 60, 59, 61, 63syl13anc 1254 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝐶)(+g𝐹)𝐶) · 𝑋) = (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)))
6533, 34, 62mulgnn0p1 13636 . . . . . . . . . . . . 13 ((𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐶𝐾) → ((𝑦 + 1)𝐸𝐶) = ((𝑦𝐸𝐶)(+g𝐹)𝐶))
6658, 47, 59, 65syl3anc 1252 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1)𝐸𝐶) = ((𝑦𝐸𝐶)(+g𝐹)𝐶))
6766eqcomd 2215 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦𝐸𝐶)(+g𝐹)𝐶) = ((𝑦 + 1)𝐸𝐶))
6867oveq1d 5989 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝐶)(+g𝐹)𝐶) · 𝑋) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
6964, 68eqtr3d 2244 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
7053, 69sylan9eqr 2264 . . . . . . . 8 (((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
7152, 70eqtrd 2242 . . . . . . 7 (((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
7271exp31 364 . . . . . 6 (𝑦 ∈ ℕ0 → (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))))
7372a2d 26 . . . . 5 (𝑦 ∈ ℕ0 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))))
745, 10, 15, 20, 43, 73nn0ind 9529 . . . 4 (𝑁 ∈ ℕ0 → (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))
7574exp4c 368 . . 3 (𝑁 ∈ ℕ0 → (𝐶𝐾 → (𝑋𝑉 → (𝑊 ∈ LMod → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))))
76753imp21 1203 . 2 ((𝐶𝐾𝑁 ∈ ℕ0𝑋𝑉) → (𝑊 ∈ LMod → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))
7776impcom 125 1 ((𝑊 ∈ LMod ∧ (𝐶𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  cfv 5294  (class class class)co 5974  0cc0 7967  1c1 7968   + caddc 7970  0cn0 9337  Basecbs 12998  +gcplusg 13076  Scalarcsca 13079   ·𝑠 cvsca 13080  0gc0g 13255  Mndcmnd 13415  .gcmg 13622  Ringcrg 13925  LModclmod 14216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-n0 9338  df-z 9415  df-uz 9691  df-seqfrec 10637  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-mulr 13090  df-sca 13092  df-vsca 13093  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-mulg 13623  df-ring 13927  df-lmod 14218
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator