ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpassd GIF version

Theorem grpassd 13553
Description: A group operation is associative. (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grpassd.b 𝐵 = (Base‘𝐺)
grpassd.p + = (+g𝐺)
grpassd.g (𝜑𝐺 ∈ Grp)
grpassd.1 (𝜑𝑋𝐵)
grpassd.2 (𝜑𝑌𝐵)
grpassd.3 (𝜑𝑍𝐵)
Assertion
Ref Expression
grpassd (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))

Proof of Theorem grpassd
StepHypRef Expression
1 grpassd.g . 2 (𝜑𝐺 ∈ Grp)
2 grpassd.1 . 2 (𝜑𝑋𝐵)
3 grpassd.2 . 2 (𝜑𝑌𝐵)
4 grpassd.3 . 2 (𝜑𝑍𝐵)
5 grpassd.b . . 3 𝐵 = (Base‘𝐺)
6 grpassd.p . . 3 + = (+g𝐺)
75, 6grpass 13550 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
81, 2, 3, 4, 7syl13anc 1273 1 (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  cfv 5318  (class class class)co 6007  Basecbs 13040  +gcplusg 13118  Grpcgrp 13541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6010  df-inn 9119  df-2 9177  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-sgrp 13443  df-mnd 13458  df-grp 13544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator