| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpcld | GIF version | ||
| Description: Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.) |
| Ref | Expression |
|---|---|
| grpcld.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcld.p | ⊢ + = (+g‘𝐺) |
| grpcld.r | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grpcld.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| grpcld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grpcld | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpcld.r | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grpcld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | grpcld.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | grpcld.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | grpcld.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 6 | 4, 5 | grpcl 13549 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 7 | 1, 2, 3, 6 | syl3anc 1271 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 +gcplusg 13118 Grpcgrp 13541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6010 df-inn 9119 df-2 9177 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 |
| This theorem is referenced by: dfgrp3m 13640 subgcl 13729 nmzsubg 13755 0nsg 13759 eqger 13769 ghmpreima 13811 conjghm 13821 conjnmz 13824 conjnmzb 13825 ringpropd 14009 dvrdir 14115 lringuplu 14168 lmodprop2d 14320 mplsubgfilemcl 14671 |
| Copyright terms: Public domain | W3C validator |