ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpmnd GIF version

Theorem grpmnd 12715
Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
Assertion
Ref Expression
grpmnd (𝐺 ∈ Grp → 𝐺 ∈ Mnd)

Proof of Theorem grpmnd
Dummy variables 𝑚 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2170 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2170 . . 3 (+g𝐺) = (+g𝐺)
3 eqid 2170 . . 3 (0g𝐺) = (0g𝐺)
41, 2, 3isgrp 12714 . 2 (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g𝐺)𝑎) = (0g𝐺)))
54simplbi 272 1 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  wral 2448  wrex 2449  cfv 5198  (class class class)co 5853  Basecbs 12416  +gcplusg 12480  0gc0g 12596  Mndcmnd 12652  Grpcgrp 12708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856  df-grp 12711
This theorem is referenced by:  grpcl  12716  grpass  12717  grpideu  12719  grpmndd  12720  grpplusf  12722  grpplusfo  12723  grpsgrp  12731  dfgrp2  12732  grpidcl  12734  grplid  12736  grprid  12737
  Copyright terms: Public domain W3C validator