| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpmnd | GIF version | ||
| Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpmnd | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2206 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2206 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | 1, 2, 3 | isgrp 13382 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g‘𝐺)𝑎) = (0g‘𝐺))) |
| 5 | 4 | simplbi 274 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 +gcplusg 12953 0gc0g 13132 Mndcmnd 13292 Grpcgrp 13376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3171 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-iota 5237 df-fv 5284 df-ov 5954 df-grp 13379 |
| This theorem is referenced by: grpcl 13384 grpass 13385 grpideu 13387 grpmndd 13389 grpplusf 13391 grpplusfo 13392 grpsgrp 13401 dfgrp2 13403 grpidcl 13405 grplid 13407 grprid 13408 dfgrp3m 13475 prdsgrpd 13485 prdsinvgd 13486 mulgaddcom 13526 mulginvcom 13527 mulgz 13530 mulgneg2 13536 mulgass 13539 issubg3 13572 grpissubg 13574 0subg 13579 ghmex 13635 0ghm 13638 isabl2 13674 |
| Copyright terms: Public domain | W3C validator |