Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpmnd | GIF version |
Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpmnd | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2170 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2170 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | 1, 2, 3 | isgrp 12714 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g‘𝐺)𝑎) = (0g‘𝐺))) |
5 | 4 | simplbi 272 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ‘cfv 5198 (class class class)co 5853 Basecbs 12416 +gcplusg 12480 0gc0g 12596 Mndcmnd 12652 Grpcgrp 12708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-grp 12711 |
This theorem is referenced by: grpcl 12716 grpass 12717 grpideu 12719 grpmndd 12720 grpplusf 12722 grpplusfo 12723 grpsgrp 12731 dfgrp2 12732 grpidcl 12734 grplid 12736 grprid 12737 |
Copyright terms: Public domain | W3C validator |