| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpmnd | GIF version | ||
| Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpmnd | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2196 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2196 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | 1, 2, 3 | isgrp 13210 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g‘𝐺)𝑎) = (0g‘𝐺))) |
| 5 | 4 | simplbi 274 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ‘cfv 5259 (class class class)co 5925 Basecbs 12705 +gcplusg 12782 0gc0g 12960 Mndcmnd 13120 Grpcgrp 13204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-grp 13207 |
| This theorem is referenced by: grpcl 13212 grpass 13213 grpideu 13215 grpmndd 13217 grpplusf 13219 grpplusfo 13220 grpsgrp 13229 dfgrp2 13231 grpidcl 13233 grplid 13235 grprid 13236 dfgrp3m 13303 prdsgrpd 13313 prdsinvgd 13314 mulgaddcom 13354 mulginvcom 13355 mulgz 13358 mulgneg2 13364 mulgass 13367 issubg3 13400 grpissubg 13402 0subg 13407 ghmex 13463 0ghm 13466 isabl2 13502 |
| Copyright terms: Public domain | W3C validator |