![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpmnd | GIF version |
Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpmnd | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2193 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2193 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | 1, 2, 3 | isgrp 13081 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g‘𝐺)𝑎) = (0g‘𝐺))) |
5 | 4 | simplbi 274 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 +gcplusg 12698 0gc0g 12870 Mndcmnd 13000 Grpcgrp 13075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-grp 13078 |
This theorem is referenced by: grpcl 13083 grpass 13084 grpideu 13086 grpmndd 13088 grpplusf 13090 grpplusfo 13091 grpsgrp 13100 dfgrp2 13102 grpidcl 13104 grplid 13106 grprid 13107 dfgrp3m 13174 mulgaddcom 13219 mulginvcom 13220 mulgz 13223 mulgneg2 13229 mulgass 13232 issubg3 13265 grpissubg 13267 0subg 13272 ghmex 13328 0ghm 13331 isabl2 13367 |
Copyright terms: Public domain | W3C validator |