ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpmnd GIF version

Theorem grpmnd 13149
Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
Assertion
Ref Expression
grpmnd (𝐺 ∈ Grp → 𝐺 ∈ Mnd)

Proof of Theorem grpmnd
Dummy variables 𝑚 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2196 . . 3 (+g𝐺) = (+g𝐺)
3 eqid 2196 . . 3 (0g𝐺) = (0g𝐺)
41, 2, 3isgrp 13148 . 2 (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g𝐺)𝑎) = (0g𝐺)))
54simplbi 274 1 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wral 2475  wrex 2476  cfv 5259  (class class class)co 5923  Basecbs 12688  +gcplusg 12765  0gc0g 12937  Mndcmnd 13067  Grpcgrp 13142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5926  df-grp 13145
This theorem is referenced by:  grpcl  13150  grpass  13151  grpideu  13153  grpmndd  13155  grpplusf  13157  grpplusfo  13158  grpsgrp  13167  dfgrp2  13169  grpidcl  13171  grplid  13173  grprid  13174  dfgrp3m  13241  mulgaddcom  13286  mulginvcom  13287  mulgz  13290  mulgneg2  13296  mulgass  13299  issubg3  13332  grpissubg  13334  0subg  13339  ghmex  13395  0ghm  13398  isabl2  13434
  Copyright terms: Public domain W3C validator