| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpmnd | GIF version | ||
| Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpmnd | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2196 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2196 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | 1, 2, 3 | isgrp 13148 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g‘𝐺)𝑎) = (0g‘𝐺))) |
| 5 | 4 | simplbi 274 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ‘cfv 5259 (class class class)co 5923 Basecbs 12688 +gcplusg 12765 0gc0g 12937 Mndcmnd 13067 Grpcgrp 13142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 df-grp 13145 |
| This theorem is referenced by: grpcl 13150 grpass 13151 grpideu 13153 grpmndd 13155 grpplusf 13157 grpplusfo 13158 grpsgrp 13167 dfgrp2 13169 grpidcl 13171 grplid 13173 grprid 13174 dfgrp3m 13241 mulgaddcom 13286 mulginvcom 13287 mulgz 13290 mulgneg2 13296 mulgass 13299 issubg3 13332 grpissubg 13334 0subg 13339 ghmex 13395 0ghm 13398 isabl2 13434 |
| Copyright terms: Public domain | W3C validator |