| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitsubm | GIF version | ||
| Description: The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| unitsubm.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| unitsubm.2 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| unitsubm | ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2208 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑅)) | |
| 2 | unitsubm.1 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅)) |
| 4 | ringsrg 13924 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 5 | 1, 3, 4 | unitssd 13986 | . 2 ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ (Base‘𝑅)) |
| 6 | eqid 2207 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 2, 6 | 1unit 13984 | . 2 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝑈) |
| 8 | unitsubm.2 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 9 | 8 | oveq1i 5977 | . . . 4 ⊢ (𝑀 ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈) |
| 10 | 2, 9 | unitgrp 13993 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑀 ↾s 𝑈) ∈ Grp) |
| 11 | 10 | grpmndd 13460 | . 2 ⊢ (𝑅 ∈ Ring → (𝑀 ↾s 𝑈) ∈ Mnd) |
| 12 | 8 | ringmgp 13879 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
| 13 | eqid 2207 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 14 | eqid 2207 | . . . . 5 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 15 | eqid 2207 | . . . . 5 ⊢ (𝑀 ↾s 𝑈) = (𝑀 ↾s 𝑈) | |
| 16 | 13, 14, 15 | issubm2 13420 | . . . 4 ⊢ (𝑀 ∈ Mnd → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd))) |
| 17 | 12, 16 | syl 14 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd))) |
| 18 | eqid 2207 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 19 | 8, 18 | mgpbasg 13803 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑀)) |
| 20 | 19 | sseq2d 3231 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑈 ⊆ (Base‘𝑅) ↔ 𝑈 ⊆ (Base‘𝑀))) |
| 21 | 8, 6 | ringidvalg 13838 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) = (0g‘𝑀)) |
| 22 | 21 | eleq1d 2276 | . . . 4 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ∈ 𝑈 ↔ (0g‘𝑀) ∈ 𝑈)) |
| 23 | 20, 22 | 3anbi12d 1326 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝑈 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd) ↔ (𝑈 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd))) |
| 24 | 17, 23 | bitr4d 191 | . 2 ⊢ (𝑅 ∈ Ring → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd))) |
| 25 | 5, 7, 11, 24 | mpbir3and 1183 | 1 ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 ⊆ wss 3174 ‘cfv 5290 (class class class)co 5967 Basecbs 12947 ↾s cress 12948 0gc0g 13203 Mndcmnd 13363 SubMndcsubmnd 13405 mulGrpcmgp 13797 1rcur 13836 Ringcrg 13873 Unitcui 13964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-tpos 6354 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-iress 12955 df-plusg 13037 df-mulr 13038 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-submnd 13407 df-grp 13450 df-minusg 13451 df-cmn 13737 df-abl 13738 df-mgp 13798 df-ur 13837 df-srg 13841 df-ring 13875 df-oppr 13945 df-dvdsr 13966 df-unit 13967 |
| This theorem is referenced by: lgseisenlem3 15664 lgseisenlem4 15665 |
| Copyright terms: Public domain | W3C validator |