| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitsubm | GIF version | ||
| Description: The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| unitsubm.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| unitsubm.2 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| unitsubm | ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2197 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑅)) | |
| 2 | unitsubm.1 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅)) |
| 4 | ringsrg 13603 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 5 | 1, 3, 4 | unitssd 13665 | . 2 ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ (Base‘𝑅)) |
| 6 | eqid 2196 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 2, 6 | 1unit 13663 | . 2 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝑈) |
| 8 | unitsubm.2 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 9 | 8 | oveq1i 5932 | . . . 4 ⊢ (𝑀 ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈) |
| 10 | 2, 9 | unitgrp 13672 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑀 ↾s 𝑈) ∈ Grp) |
| 11 | 10 | grpmndd 13145 | . 2 ⊢ (𝑅 ∈ Ring → (𝑀 ↾s 𝑈) ∈ Mnd) |
| 12 | 8 | ringmgp 13558 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
| 13 | eqid 2196 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 14 | eqid 2196 | . . . . 5 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 15 | eqid 2196 | . . . . 5 ⊢ (𝑀 ↾s 𝑈) = (𝑀 ↾s 𝑈) | |
| 16 | 13, 14, 15 | issubm2 13105 | . . . 4 ⊢ (𝑀 ∈ Mnd → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd))) |
| 17 | 12, 16 | syl 14 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd))) |
| 18 | eqid 2196 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 19 | 8, 18 | mgpbasg 13482 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑀)) |
| 20 | 19 | sseq2d 3213 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑈 ⊆ (Base‘𝑅) ↔ 𝑈 ⊆ (Base‘𝑀))) |
| 21 | 8, 6 | ringidvalg 13517 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) = (0g‘𝑀)) |
| 22 | 21 | eleq1d 2265 | . . . 4 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ∈ 𝑈 ↔ (0g‘𝑀) ∈ 𝑈)) |
| 23 | 20, 22 | 3anbi12d 1324 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝑈 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd) ↔ (𝑈 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd))) |
| 24 | 17, 23 | bitr4d 191 | . 2 ⊢ (𝑅 ∈ Ring → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd))) |
| 25 | 5, 7, 11, 24 | mpbir3and 1182 | 1 ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 ↾s cress 12679 0gc0g 12927 Mndcmnd 13057 SubMndcsubmnd 13090 mulGrpcmgp 13476 1rcur 13515 Ringcrg 13552 Unitcui 13643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-tpos 6303 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mulr 12769 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-submnd 13092 df-grp 13135 df-minusg 13136 df-cmn 13416 df-abl 13417 df-mgp 13477 df-ur 13516 df-srg 13520 df-ring 13554 df-oppr 13624 df-dvdsr 13645 df-unit 13646 |
| This theorem is referenced by: lgseisenlem3 15313 lgseisenlem4 15314 |
| Copyright terms: Public domain | W3C validator |