ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitsubm GIF version

Theorem unitsubm 13751
Description: The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
unitsubm.1 𝑈 = (Unit‘𝑅)
unitsubm.2 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
unitsubm (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀))

Proof of Theorem unitsubm
StepHypRef Expression
1 eqidd 2197 . . 3 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑅))
2 unitsubm.1 . . . 4 𝑈 = (Unit‘𝑅)
32a1i 9 . . 3 (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅))
4 ringsrg 13679 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
51, 3, 4unitssd 13741 . 2 (𝑅 ∈ Ring → 𝑈 ⊆ (Base‘𝑅))
6 eqid 2196 . . 3 (1r𝑅) = (1r𝑅)
72, 61unit 13739 . 2 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
8 unitsubm.2 . . . . 5 𝑀 = (mulGrp‘𝑅)
98oveq1i 5935 . . . 4 (𝑀s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
102, 9unitgrp 13748 . . 3 (𝑅 ∈ Ring → (𝑀s 𝑈) ∈ Grp)
1110grpmndd 13215 . 2 (𝑅 ∈ Ring → (𝑀s 𝑈) ∈ Mnd)
128ringmgp 13634 . . . 4 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
13 eqid 2196 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
14 eqid 2196 . . . . 5 (0g𝑀) = (0g𝑀)
15 eqid 2196 . . . . 5 (𝑀s 𝑈) = (𝑀s 𝑈)
1613, 14, 15issubm2 13175 . . . 4 (𝑀 ∈ Mnd → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑈 ∧ (𝑀s 𝑈) ∈ Mnd)))
1712, 16syl 14 . . 3 (𝑅 ∈ Ring → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑈 ∧ (𝑀s 𝑈) ∈ Mnd)))
18 eqid 2196 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
198, 18mgpbasg 13558 . . . . 5 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑀))
2019sseq2d 3214 . . . 4 (𝑅 ∈ Ring → (𝑈 ⊆ (Base‘𝑅) ↔ 𝑈 ⊆ (Base‘𝑀)))
218, 6ringidvalg 13593 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) = (0g𝑀))
2221eleq1d 2265 . . . 4 (𝑅 ∈ Ring → ((1r𝑅) ∈ 𝑈 ↔ (0g𝑀) ∈ 𝑈))
2320, 223anbi12d 1324 . . 3 (𝑅 ∈ Ring → ((𝑈 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝑈 ∧ (𝑀s 𝑈) ∈ Mnd) ↔ (𝑈 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑈 ∧ (𝑀s 𝑈) ∈ Mnd)))
2417, 23bitr4d 191 . 2 (𝑅 ∈ Ring → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝑈 ∧ (𝑀s 𝑈) ∈ Mnd)))
255, 7, 11, 24mpbir3and 1182 1 (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  wcel 2167  wss 3157  cfv 5259  (class class class)co 5925  Basecbs 12703  s cress 12704  0gc0g 12958  Mndcmnd 13118  SubMndcsubmnd 13160  mulGrpcmgp 13552  1rcur 13591  Ringcrg 13628  Unitcui 13719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-submnd 13162  df-grp 13205  df-minusg 13206  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-oppr 13700  df-dvdsr 13721  df-unit 13722
This theorem is referenced by:  lgseisenlem3  15397  lgseisenlem4  15398
  Copyright terms: Public domain W3C validator