ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitsubm GIF version

Theorem unitsubm 13675
Description: The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
unitsubm.1 𝑈 = (Unit‘𝑅)
unitsubm.2 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
unitsubm (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀))

Proof of Theorem unitsubm
StepHypRef Expression
1 eqidd 2197 . . 3 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑅))
2 unitsubm.1 . . . 4 𝑈 = (Unit‘𝑅)
32a1i 9 . . 3 (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅))
4 ringsrg 13603 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
51, 3, 4unitssd 13665 . 2 (𝑅 ∈ Ring → 𝑈 ⊆ (Base‘𝑅))
6 eqid 2196 . . 3 (1r𝑅) = (1r𝑅)
72, 61unit 13663 . 2 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
8 unitsubm.2 . . . . 5 𝑀 = (mulGrp‘𝑅)
98oveq1i 5932 . . . 4 (𝑀s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
102, 9unitgrp 13672 . . 3 (𝑅 ∈ Ring → (𝑀s 𝑈) ∈ Grp)
1110grpmndd 13145 . 2 (𝑅 ∈ Ring → (𝑀s 𝑈) ∈ Mnd)
128ringmgp 13558 . . . 4 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
13 eqid 2196 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
14 eqid 2196 . . . . 5 (0g𝑀) = (0g𝑀)
15 eqid 2196 . . . . 5 (𝑀s 𝑈) = (𝑀s 𝑈)
1613, 14, 15issubm2 13105 . . . 4 (𝑀 ∈ Mnd → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑈 ∧ (𝑀s 𝑈) ∈ Mnd)))
1712, 16syl 14 . . 3 (𝑅 ∈ Ring → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑈 ∧ (𝑀s 𝑈) ∈ Mnd)))
18 eqid 2196 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
198, 18mgpbasg 13482 . . . . 5 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑀))
2019sseq2d 3213 . . . 4 (𝑅 ∈ Ring → (𝑈 ⊆ (Base‘𝑅) ↔ 𝑈 ⊆ (Base‘𝑀)))
218, 6ringidvalg 13517 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) = (0g𝑀))
2221eleq1d 2265 . . . 4 (𝑅 ∈ Ring → ((1r𝑅) ∈ 𝑈 ↔ (0g𝑀) ∈ 𝑈))
2320, 223anbi12d 1324 . . 3 (𝑅 ∈ Ring → ((𝑈 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝑈 ∧ (𝑀s 𝑈) ∈ Mnd) ↔ (𝑈 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑈 ∧ (𝑀s 𝑈) ∈ Mnd)))
2417, 23bitr4d 191 . 2 (𝑅 ∈ Ring → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝑈 ∧ (𝑀s 𝑈) ∈ Mnd)))
255, 7, 11, 24mpbir3and 1182 1 (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  wcel 2167  wss 3157  cfv 5258  (class class class)co 5922  Basecbs 12678  s cress 12679  0gc0g 12927  Mndcmnd 13057  SubMndcsubmnd 13090  mulGrpcmgp 13476  1rcur 13515  Ringcrg 13552  Unitcui 13643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-submnd 13092  df-grp 13135  df-minusg 13136  df-cmn 13416  df-abl 13417  df-mgp 13477  df-ur 13516  df-srg 13520  df-ring 13554  df-oppr 13624  df-dvdsr 13645  df-unit 13646
This theorem is referenced by:  lgseisenlem3  15313  lgseisenlem4  15314
  Copyright terms: Public domain W3C validator