| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitsubm | GIF version | ||
| Description: The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| unitsubm.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| unitsubm.2 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| unitsubm | ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2206 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑅)) | |
| 2 | unitsubm.1 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅)) |
| 4 | ringsrg 13809 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 5 | 1, 3, 4 | unitssd 13871 | . 2 ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ (Base‘𝑅)) |
| 6 | eqid 2205 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 2, 6 | 1unit 13869 | . 2 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝑈) |
| 8 | unitsubm.2 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 9 | 8 | oveq1i 5954 | . . . 4 ⊢ (𝑀 ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈) |
| 10 | 2, 9 | unitgrp 13878 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑀 ↾s 𝑈) ∈ Grp) |
| 11 | 10 | grpmndd 13345 | . 2 ⊢ (𝑅 ∈ Ring → (𝑀 ↾s 𝑈) ∈ Mnd) |
| 12 | 8 | ringmgp 13764 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
| 13 | eqid 2205 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 14 | eqid 2205 | . . . . 5 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 15 | eqid 2205 | . . . . 5 ⊢ (𝑀 ↾s 𝑈) = (𝑀 ↾s 𝑈) | |
| 16 | 13, 14, 15 | issubm2 13305 | . . . 4 ⊢ (𝑀 ∈ Mnd → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd))) |
| 17 | 12, 16 | syl 14 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd))) |
| 18 | eqid 2205 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 19 | 8, 18 | mgpbasg 13688 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑀)) |
| 20 | 19 | sseq2d 3223 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑈 ⊆ (Base‘𝑅) ↔ 𝑈 ⊆ (Base‘𝑀))) |
| 21 | 8, 6 | ringidvalg 13723 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) = (0g‘𝑀)) |
| 22 | 21 | eleq1d 2274 | . . . 4 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ∈ 𝑈 ↔ (0g‘𝑀) ∈ 𝑈)) |
| 23 | 20, 22 | 3anbi12d 1326 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝑈 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd) ↔ (𝑈 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd))) |
| 24 | 17, 23 | bitr4d 191 | . 2 ⊢ (𝑅 ∈ Ring → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd))) |
| 25 | 5, 7, 11, 24 | mpbir3and 1183 | 1 ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 ⊆ wss 3166 ‘cfv 5271 (class class class)co 5944 Basecbs 12832 ↾s cress 12833 0gc0g 13088 Mndcmnd 13248 SubMndcsubmnd 13290 mulGrpcmgp 13682 1rcur 13721 Ringcrg 13758 Unitcui 13849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-tpos 6331 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-3 9096 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-iress 12840 df-plusg 12922 df-mulr 12923 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-submnd 13292 df-grp 13335 df-minusg 13336 df-cmn 13622 df-abl 13623 df-mgp 13683 df-ur 13722 df-srg 13726 df-ring 13760 df-oppr 13830 df-dvdsr 13851 df-unit 13852 |
| This theorem is referenced by: lgseisenlem3 15549 lgseisenlem4 15550 |
| Copyright terms: Public domain | W3C validator |