| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitsubm | GIF version | ||
| Description: The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| unitsubm.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| unitsubm.2 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| unitsubm | ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2230 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑅)) | |
| 2 | unitsubm.1 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅)) |
| 4 | ringsrg 14010 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 5 | 1, 3, 4 | unitssd 14073 | . 2 ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ (Base‘𝑅)) |
| 6 | eqid 2229 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 2, 6 | 1unit 14071 | . 2 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝑈) |
| 8 | unitsubm.2 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 9 | 8 | oveq1i 6011 | . . . 4 ⊢ (𝑀 ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈) |
| 10 | 2, 9 | unitgrp 14080 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑀 ↾s 𝑈) ∈ Grp) |
| 11 | 10 | grpmndd 13546 | . 2 ⊢ (𝑅 ∈ Ring → (𝑀 ↾s 𝑈) ∈ Mnd) |
| 12 | 8 | ringmgp 13965 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
| 13 | eqid 2229 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 14 | eqid 2229 | . . . . 5 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 15 | eqid 2229 | . . . . 5 ⊢ (𝑀 ↾s 𝑈) = (𝑀 ↾s 𝑈) | |
| 16 | 13, 14, 15 | issubm2 13506 | . . . 4 ⊢ (𝑀 ∈ Mnd → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd))) |
| 17 | 12, 16 | syl 14 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd))) |
| 18 | eqid 2229 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 19 | 8, 18 | mgpbasg 13889 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑀)) |
| 20 | 19 | sseq2d 3254 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑈 ⊆ (Base‘𝑅) ↔ 𝑈 ⊆ (Base‘𝑀))) |
| 21 | 8, 6 | ringidvalg 13924 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) = (0g‘𝑀)) |
| 22 | 21 | eleq1d 2298 | . . . 4 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ∈ 𝑈 ↔ (0g‘𝑀) ∈ 𝑈)) |
| 23 | 20, 22 | 3anbi12d 1347 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝑈 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd) ↔ (𝑈 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd))) |
| 24 | 17, 23 | bitr4d 191 | . 2 ⊢ (𝑅 ∈ Ring → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝑈 ∧ (𝑀 ↾s 𝑈) ∈ Mnd))) |
| 25 | 5, 7, 11, 24 | mpbir3and 1204 | 1 ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 ‘cfv 5318 (class class class)co 6001 Basecbs 13032 ↾s cress 13033 0gc0g 13289 Mndcmnd 13449 SubMndcsubmnd 13491 mulGrpcmgp 13883 1rcur 13922 Ringcrg 13959 Unitcui 14050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-tpos 6391 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-iress 13040 df-plusg 13123 df-mulr 13124 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-submnd 13493 df-grp 13536 df-minusg 13537 df-cmn 13823 df-abl 13824 df-mgp 13884 df-ur 13923 df-srg 13927 df-ring 13961 df-oppr 14031 df-dvdsr 14052 df-unit 14053 |
| This theorem is referenced by: lgseisenlem3 15751 lgseisenlem4 15752 |
| Copyright terms: Public domain | W3C validator |