| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2an2r | GIF version | ||
| Description: syl2anr 290 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an2r.1 | ⊢ (𝜑 → 𝜓) |
| syl2an2r.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| syl2an2r.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl2an2r | ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an2r.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an2r.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 3 | syl2an2r.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜒)) → 𝜏) |
| 5 | 4 | anabss5 578 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: op1stbg 4515 caofid0l 6166 caofid0r 6167 caofid1 6168 caofid2 6169 mapen 6916 fival 7045 supelti 7077 supmaxti 7079 infminti 7102 xnegdi 9962 frecuzrdgsuc 10525 hashunlem 10915 2zsupmax 11410 xrmin1inf 11451 serf0 11536 fsumabs 11649 binomlem 11667 cvgratz 11716 efcllemp 11842 ef0lem 11844 tannegap 11912 modm1div 11984 divalglemnqt 12104 bitsfzolem 12138 lcmid 12275 hashdvds 12416 prmdivdiv 12432 odzcllem 12438 reumodprminv 12449 nnnn0modprm0 12451 pythagtrip 12479 pcmpt 12539 pockthg 12553 4sqlem9 12582 4sqleminfi 12593 4sqexercise1 12594 4sqlem11 12597 ennnfonelemkh 12656 ctinf 12674 nninfdclemcl 12692 nninfdclemp1 12694 setsslid 12756 imasival 13010 imasaddflemg 13020 grpinvalem 13089 issubmnd 13146 imasmnd 13157 isgrpinv 13258 grpinvssd 13281 pwssub 13317 imasgrp 13319 mulgnndir 13359 subginv 13389 subginvcl 13391 ghmpreima 13474 conjnsg 13489 srgidmlem 13612 ringidmlem 13656 imasring 13698 dvdsr01 13738 unitnegcl 13764 01eq0ring 13823 issubrng2 13844 subrginv 13871 subrgunit 13873 aprsym 13918 lmodvneg1 13964 lspsn 14050 isridlrng 14116 lidl0cl 14117 rspcl 14125 rspssid 14126 rnglidlmmgm 14130 2idlcpblrng 14157 quscrng 14167 rspsn 14168 znidom 14291 psrlinv 14318 psr1clfi 14322 topbas 14411 tgrest 14513 txss12 14610 mpomulcn 14910 cnplimclemle 15012 dvconstss 15042 efltlemlt 15118 coseq0q4123 15178 lgsval 15353 lgscllem 15356 gausslemma2dlem1a 15407 lgseisen 15423 lgsquadlem1 15426 lgsquadlem2 15427 2lgslem3a1 15446 2lgslem3b1 15447 2lgslem3c1 15448 2lgslem3d1 15449 2lgsoddprm 15462 neapmkvlem 15824 |
| Copyright terms: Public domain | W3C validator |