Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl2an2r | GIF version |
Description: syl2anr 288 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
Ref | Expression |
---|---|
syl2an2r.1 | ⊢ (𝜑 → 𝜓) |
syl2an2r.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
syl2an2r.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl2an2r | ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an2r.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an2r.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
3 | syl2an2r.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
4 | 1, 2, 3 | syl2an 287 | . 2 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜒)) → 𝜏) |
5 | 4 | anabss5 568 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: op1stbg 4456 mapen 6808 fival 6931 supelti 6963 supmaxti 6965 infminti 6988 xnegdi 9800 frecuzrdgsuc 10345 hashunlem 10713 2zsupmax 11163 xrmin1inf 11204 serf0 11289 fsumabs 11402 binomlem 11420 cvgratz 11469 efcllemp 11595 ef0lem 11597 tannegap 11665 modm1div 11736 divalglemnqt 11853 lcmid 12008 hashdvds 12149 prmdivdiv 12165 odzcllem 12170 reumodprminv 12181 nnnn0modprm0 12183 pythagtrip 12211 pcmpt 12269 pockthg 12283 4sqlem9 12312 ennnfonelemkh 12341 ctinf 12359 nninfdclemp1 12379 setsslid 12440 topbas 12667 tgrest 12769 txss12 12866 cnplimclemle 13237 efltlemlt 13295 coseq0q4123 13355 lgsval 13505 lgscllem 13508 neapmkvlem 13905 |
Copyright terms: Public domain | W3C validator |