ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl2an2r GIF version

Theorem syl2an2r 590
Description: syl2anr 288 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.)
Hypotheses
Ref Expression
syl2an2r.1 (𝜑𝜓)
syl2an2r.2 ((𝜑𝜒) → 𝜃)
syl2an2r.3 ((𝜓𝜃) → 𝜏)
Assertion
Ref Expression
syl2an2r ((𝜑𝜒) → 𝜏)

Proof of Theorem syl2an2r
StepHypRef Expression
1 syl2an2r.1 . . 3 (𝜑𝜓)
2 syl2an2r.2 . . 3 ((𝜑𝜒) → 𝜃)
3 syl2an2r.3 . . 3 ((𝜓𝜃) → 𝜏)
41, 2, 3syl2an 287 . 2 ((𝜑 ∧ (𝜑𝜒)) → 𝜏)
54anabss5 573 1 ((𝜑𝜒) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  op1stbg  4462  mapen  6822  fival  6945  supelti  6977  supmaxti  6979  infminti  7002  xnegdi  9818  frecuzrdgsuc  10363  hashunlem  10732  2zsupmax  11182  xrmin1inf  11223  serf0  11308  fsumabs  11421  binomlem  11439  cvgratz  11488  efcllemp  11614  ef0lem  11616  tannegap  11684  modm1div  11755  divalglemnqt  11872  lcmid  12027  hashdvds  12168  prmdivdiv  12184  odzcllem  12189  reumodprminv  12200  nnnn0modprm0  12202  pythagtrip  12230  pcmpt  12288  pockthg  12302  4sqlem9  12331  ennnfonelemkh  12360  ctinf  12378  nninfdclemp1  12398  setsslid  12459  grprinvlem  12632  topbas  12826  tgrest  12928  txss12  13025  cnplimclemle  13396  efltlemlt  13454  coseq0q4123  13514  lgsval  13664  lgscllem  13667  neapmkvlem  14063
  Copyright terms: Public domain W3C validator