| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > syl2an2r | GIF version | ||
| Description: syl2anr 290 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| syl2an2r.1 | ⊢ (𝜑 → 𝜓) | 
| syl2an2r.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | 
| syl2an2r.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | 
| Ref | Expression | 
|---|---|
| syl2an2r | ⊢ ((𝜑 ∧ 𝜒) → 𝜏) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl2an2r.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an2r.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 3 | syl2an2r.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜒)) → 𝜏) | 
| 5 | 4 | anabss5 578 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜏) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: op1stbg 4514 mapen 6907 fival 7036 supelti 7068 supmaxti 7070 infminti 7093 xnegdi 9943 frecuzrdgsuc 10506 hashunlem 10896 2zsupmax 11391 xrmin1inf 11432 serf0 11517 fsumabs 11630 binomlem 11648 cvgratz 11697 efcllemp 11823 ef0lem 11825 tannegap 11893 modm1div 11965 divalglemnqt 12085 bitsfzolem 12118 lcmid 12248 hashdvds 12389 prmdivdiv 12405 odzcllem 12411 reumodprminv 12422 nnnn0modprm0 12424 pythagtrip 12452 pcmpt 12512 pockthg 12526 4sqlem9 12555 4sqleminfi 12566 4sqexercise1 12567 4sqlem11 12570 ennnfonelemkh 12629 ctinf 12647 nninfdclemcl 12665 nninfdclemp1 12667 setsslid 12729 imasival 12949 imasaddflemg 12959 grpinvalem 13028 issubmnd 13083 isgrpinv 13186 grpinvssd 13209 imasgrp 13241 mulgnndir 13281 subginv 13311 subginvcl 13313 ghmpreima 13396 conjnsg 13411 srgidmlem 13534 ringidmlem 13578 imasring 13620 dvdsr01 13660 unitnegcl 13686 01eq0ring 13745 issubrng2 13766 subrginv 13793 subrgunit 13795 aprsym 13840 lmodvneg1 13886 lspsn 13972 isridlrng 14038 lidl0cl 14039 rspcl 14047 rspssid 14048 rnglidlmmgm 14052 2idlcpblrng 14079 quscrng 14089 rspsn 14090 znidom 14213 topbas 14303 tgrest 14405 txss12 14502 mpomulcn 14802 cnplimclemle 14904 dvconstss 14934 efltlemlt 15010 coseq0q4123 15070 lgsval 15245 lgscllem 15248 gausslemma2dlem1a 15299 lgseisen 15315 lgsquadlem1 15318 lgsquadlem2 15319 2lgslem3a1 15338 2lgslem3b1 15339 2lgslem3c1 15340 2lgslem3d1 15341 2lgsoddprm 15354 neapmkvlem 15711 | 
| Copyright terms: Public domain | W3C validator |