| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2an2r | GIF version | ||
| Description: syl2anr 290 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an2r.1 | ⊢ (𝜑 → 𝜓) |
| syl2an2r.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| syl2an2r.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl2an2r | ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an2r.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an2r.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 3 | syl2an2r.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜒)) → 𝜏) |
| 5 | 4 | anabss5 578 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: op1stbg 4515 caofid0l 6166 caofid0r 6167 caofid1 6168 caofid2 6169 mapen 6916 fival 7045 supelti 7077 supmaxti 7079 infminti 7102 xnegdi 9960 frecuzrdgsuc 10523 hashunlem 10913 2zsupmax 11408 xrmin1inf 11449 serf0 11534 fsumabs 11647 binomlem 11665 cvgratz 11714 efcllemp 11840 ef0lem 11842 tannegap 11910 modm1div 11982 divalglemnqt 12102 bitsfzolem 12136 lcmid 12273 hashdvds 12414 prmdivdiv 12430 odzcllem 12436 reumodprminv 12447 nnnn0modprm0 12449 pythagtrip 12477 pcmpt 12537 pockthg 12551 4sqlem9 12580 4sqleminfi 12591 4sqexercise1 12592 4sqlem11 12595 ennnfonelemkh 12654 ctinf 12672 nninfdclemcl 12690 nninfdclemp1 12692 setsslid 12754 imasival 13008 imasaddflemg 13018 grpinvalem 13087 issubmnd 13144 imasmnd 13155 isgrpinv 13256 grpinvssd 13279 pwssub 13315 imasgrp 13317 mulgnndir 13357 subginv 13387 subginvcl 13389 ghmpreima 13472 conjnsg 13487 srgidmlem 13610 ringidmlem 13654 imasring 13696 dvdsr01 13736 unitnegcl 13762 01eq0ring 13821 issubrng2 13842 subrginv 13869 subrgunit 13871 aprsym 13916 lmodvneg1 13962 lspsn 14048 isridlrng 14114 lidl0cl 14115 rspcl 14123 rspssid 14124 rnglidlmmgm 14128 2idlcpblrng 14155 quscrng 14165 rspsn 14166 znidom 14289 psrlinv 14312 psr1clfi 14316 topbas 14387 tgrest 14489 txss12 14586 mpomulcn 14886 cnplimclemle 14988 dvconstss 15018 efltlemlt 15094 coseq0q4123 15154 lgsval 15329 lgscllem 15332 gausslemma2dlem1a 15383 lgseisen 15399 lgsquadlem1 15402 lgsquadlem2 15403 2lgslem3a1 15422 2lgslem3b1 15423 2lgslem3c1 15424 2lgslem3d1 15425 2lgsoddprm 15438 neapmkvlem 15798 |
| Copyright terms: Public domain | W3C validator |