ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl2an2r GIF version

Theorem syl2an2r 563
Description: syl2anr 285 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.)
Hypotheses
Ref Expression
syl2an2r.1 (𝜑𝜓)
syl2an2r.2 ((𝜑𝜒) → 𝜃)
syl2an2r.3 ((𝜓𝜃) → 𝜏)
Assertion
Ref Expression
syl2an2r ((𝜑𝜒) → 𝜏)

Proof of Theorem syl2an2r
StepHypRef Expression
1 syl2an2r.1 . . 3 (𝜑𝜓)
2 syl2an2r.2 . . 3 ((𝜑𝜒) → 𝜃)
3 syl2an2r.3 . . 3 ((𝜓𝜃) → 𝜏)
41, 2, 3syl2an 284 . 2 ((𝜑 ∧ (𝜑𝜒)) → 𝜏)
54anabss5 546 1 ((𝜑𝜒) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  op1stbg  4314  mapen  6616  supelti  6751  supmaxti  6753  infminti  6776  frecuzrdgsuc  9882  hashunlem  10273  2zsupmax  10718  serf0  10802  fsumabs  10920  binomlem  10938  cvgratz  10987  efcllemp  11009  ef0lem  11011  tannegap  11080  divalglemnqt  11259  lcmid  11401  hashdvds  11536  setsslid  11605  topbas  11828
  Copyright terms: Public domain W3C validator