Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl2an2r | GIF version |
Description: syl2anr 288 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
Ref | Expression |
---|---|
syl2an2r.1 | ⊢ (𝜑 → 𝜓) |
syl2an2r.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
syl2an2r.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl2an2r | ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an2r.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an2r.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
3 | syl2an2r.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
4 | 1, 2, 3 | syl2an 287 | . 2 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜒)) → 𝜏) |
5 | 4 | anabss5 573 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: op1stbg 4462 mapen 6822 fival 6945 supelti 6977 supmaxti 6979 infminti 7002 xnegdi 9818 frecuzrdgsuc 10363 hashunlem 10732 2zsupmax 11182 xrmin1inf 11223 serf0 11308 fsumabs 11421 binomlem 11439 cvgratz 11488 efcllemp 11614 ef0lem 11616 tannegap 11684 modm1div 11755 divalglemnqt 11872 lcmid 12027 hashdvds 12168 prmdivdiv 12184 odzcllem 12189 reumodprminv 12200 nnnn0modprm0 12202 pythagtrip 12230 pcmpt 12288 pockthg 12302 4sqlem9 12331 ennnfonelemkh 12360 ctinf 12378 nninfdclemp1 12398 setsslid 12459 grprinvlem 12632 topbas 12826 tgrest 12928 txss12 13025 cnplimclemle 13396 efltlemlt 13454 coseq0q4123 13514 lgsval 13664 lgscllem 13667 neapmkvlem 14063 |
Copyright terms: Public domain | W3C validator |